The following issues were found
pandas/tests/groupby/test_nth.py
80 issues
Line: 2
Column: 1
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
Index,
MultiIndex,
Series,
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
Index,
MultiIndex,
Series,
Reported by Pylint.
Line: 16
Column: 1
import pandas._testing as tm
def test_first_last_nth(df):
# tests for first / last / nth
grouped = df.groupby("A")
first = grouped.first()
expected = df.loc[[1, 0], ["B", "C", "D"]]
expected.index = Index(["bar", "foo"], name="A")
Reported by Pylint.
Line: 16
Column: 1
import pandas._testing as tm
def test_first_last_nth(df):
# tests for first / last / nth
grouped = df.groupby("A")
first = grouped.first()
expected = df.loc[[1, 0], ["B", "C", "D"]]
expected.index = Index(["bar", "foo"], name="A")
Reported by Pylint.
Line: 48
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
grouped["B"].nth(0)
df.loc[df["A"] == "foo", "B"] = np.nan
assert isna(grouped["B"].first()["foo"])
assert isna(grouped["B"].last()["foo"])
assert isna(grouped["B"].nth(0)["foo"])
# v0.14.0 whatsnew
df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=["A", "B"])
Reported by Bandit.
Line: 49
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
df.loc[df["A"] == "foo", "B"] = np.nan
assert isna(grouped["B"].first()["foo"])
assert isna(grouped["B"].last()["foo"])
assert isna(grouped["B"].nth(0)["foo"])
# v0.14.0 whatsnew
df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=["A", "B"])
g = df.groupby("A")
Reported by Bandit.
Line: 50
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
df.loc[df["A"] == "foo", "B"] = np.nan
assert isna(grouped["B"].first()["foo"])
assert isna(grouped["B"].last()["foo"])
assert isna(grouped["B"].nth(0)["foo"])
# v0.14.0 whatsnew
df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=["A", "B"])
g = df.groupby("A")
result = g.first()
Reported by Bandit.
Line: 54
Column: 5
# v0.14.0 whatsnew
df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=["A", "B"])
g = df.groupby("A")
result = g.first()
expected = df.iloc[[1, 2]].set_index("A")
tm.assert_frame_equal(result, expected)
expected = df.iloc[[1, 2]].set_index("A")
Reported by Pylint.
Line: 65
Column: 1
@pytest.mark.parametrize("method", ["first", "last"])
def test_first_last_with_na_object(method, nulls_fixture):
# https://github.com/pandas-dev/pandas/issues/32123
groups = DataFrame({"a": [1, 1, 2, 2], "b": [1, 2, 3, nulls_fixture]}).groupby("a")
result = getattr(groups, method)()
if method == "first":
Reported by Pylint.
Line: 83
Column: 1
@pytest.mark.parametrize("index", [0, -1])
def test_nth_with_na_object(index, nulls_fixture):
# https://github.com/pandas-dev/pandas/issues/32123
groups = DataFrame({"a": [1, 1, 2, 2], "b": [1, 2, 3, nulls_fixture]}).groupby("a")
result = groups.nth(index)
if index == 0:
Reported by Pylint.
pandas/tests/strings/test_strings.py
80 issues
Line: 7
Column: 1
)
import numpy as np
import pytest
from pandas import (
DataFrame,
Index,
MultiIndex,
Reported by Pylint.
Line: 47
Column: 12
# desired behavior is to iterate until everything would be nan on the
# next iter so make sure the last element of the iterator was 'l' in
# this case since 'wikitravel' is the longest string
assert s.dropna().values.item() == "l"
def test_iter_empty(any_string_dtype):
ser = Series([], dtype=any_string_dtype)
Reported by Pylint.
Line: 72
Column: 16
for i, s in enumerate(ser.str):
pass
assert not i
tm.assert_series_equal(ser, s)
def test_iter_object_try_string():
ser = Series(
Reported by Pylint.
Line: 73
Column: 33
pass
assert not i
tm.assert_series_equal(ser, s)
def test_iter_object_try_string():
ser = Series(
[
Reported by Pylint.
Line: 680
Column: 9
msg = "Can only use .str accessor with string values"
with pytest.raises(AttributeError, match=msg):
obj.str
def test_index_str_accessor_multiindex_raises():
# MultiIndex has mixed dtype, but not allow to use accessor
idx = MultiIndex.from_tuples([("a", "b"), ("a", "b")])
Reported by Pylint.
Line: 686
Column: 12
def test_index_str_accessor_multiindex_raises():
# MultiIndex has mixed dtype, but not allow to use accessor
idx = MultiIndex.from_tuples([("a", "b"), ("a", "b")])
assert idx.inferred_type == "mixed"
msg = "Can only use .str accessor with Index, not MultiIndex"
with pytest.raises(AttributeError, match=msg):
idx.str
Reported by Pylint.
Line: 690
Column: 9
msg = "Can only use .str accessor with Index, not MultiIndex"
with pytest.raises(AttributeError, match=msg):
idx.str
def test_str_accessor_no_new_attributes(any_string_dtype):
# https://github.com/pandas-dev/pandas/issues/10673
ser = Series(list("aabbcde"), dtype=any_string_dtype)
Reported by Pylint.
Line: 1
Column: 1
from datetime import (
datetime,
timedelta,
)
import numpy as np
import pytest
from pandas import (
Reported by Pylint.
Line: 19
Column: 1
import pandas._testing as tm
def assert_series_or_index_equal(left, right):
if isinstance(left, Series):
tm.assert_series_equal(left, right)
else: # Index
tm.assert_index_equal(left, right)
Reported by Pylint.
Line: 26
Column: 1
tm.assert_index_equal(left, right)
def test_iter():
# GH3638
strs = "google", "wikimedia", "wikipedia", "wikitravel"
ser = Series(strs)
with tm.assert_produces_warning(FutureWarning):
Reported by Pylint.
pandas/tests/strings/test_split_partition.py
80 issues
Line: 4
Column: 1
from datetime import datetime
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
Index,
Reported by Pylint.
Line: 350
Column: 3
tm.assert_frame_equal(result, exp)
# check that these are actually np.nan/pd.NA and not None
# TODO see GH 18463
# tm.assert_frame_equal does not differentiate
if any_string_dtype == "object":
assert all(np.isnan(x) for x in result.iloc[1])
else:
assert all(x is pd.NA for x in result.iloc[1])
Reported by Pylint.
Line: 1
Column: 1
from datetime import datetime
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
Index,
Reported by Pylint.
Line: 16
Column: 1
)
def test_split(any_string_dtype):
values = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"], dtype=any_string_dtype)
result = values.str.split("_")
exp = Series([["a", "b", "c"], ["c", "d", "e"], np.nan, ["f", "g", "h"]])
tm.assert_series_equal(result, exp)
Reported by Pylint.
Line: 38
Column: 1
tm.assert_series_equal(result, exp)
def test_split_object_mixed():
mixed = Series(["a_b_c", np.nan, "d_e_f", True, datetime.today(), None, 1, 2.0])
result = mixed.str.split("_")
exp = Series(
[
["a", "b", "c"],
Reported by Pylint.
Line: 53
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
np.nan,
]
)
assert isinstance(result, Series)
tm.assert_almost_equal(result, exp)
result = mixed.str.split("_", expand=False)
assert isinstance(result, Series)
tm.assert_almost_equal(result, exp)
Reported by Bandit.
Line: 57
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
tm.assert_almost_equal(result, exp)
result = mixed.str.split("_", expand=False)
assert isinstance(result, Series)
tm.assert_almost_equal(result, exp)
@pytest.mark.parametrize("method", ["split", "rsplit"])
def test_split_n(any_string_dtype, method):
Reported by Bandit.
Line: 62
Column: 1
@pytest.mark.parametrize("method", ["split", "rsplit"])
def test_split_n(any_string_dtype, method):
s = Series(["a b", pd.NA, "b c"], dtype=any_string_dtype)
expected = Series([["a", "b"], pd.NA, ["b", "c"]])
result = getattr(s.str, method)(" ", n=None)
tm.assert_series_equal(result, expected)
Reported by Pylint.
Line: 63
Column: 5
@pytest.mark.parametrize("method", ["split", "rsplit"])
def test_split_n(any_string_dtype, method):
s = Series(["a b", pd.NA, "b c"], dtype=any_string_dtype)
expected = Series([["a", "b"], pd.NA, ["b", "c"]])
result = getattr(s.str, method)(" ", n=None)
tm.assert_series_equal(result, expected)
Reported by Pylint.
Line: 73
Column: 1
tm.assert_series_equal(result, expected)
def test_rsplit(any_string_dtype):
values = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"], dtype=any_string_dtype)
result = values.str.rsplit("_")
exp = Series([["a", "b", "c"], ["c", "d", "e"], np.nan, ["f", "g", "h"]])
tm.assert_series_equal(result, exp)
Reported by Pylint.
pandas/core/arrays/period.py
79 issues
Line: 14
Column: 1
import numpy as np
from pandas._libs.arrays import NDArrayBacked
from pandas._libs.tslibs import (
BaseOffset,
NaT,
NaTType,
Timedelta,
Reported by Pylint.
Line: 14
Column: 1
import numpy as np
from pandas._libs.arrays import NDArrayBacked
from pandas._libs.tslibs import (
BaseOffset,
NaT,
NaTType,
Timedelta,
Reported by Pylint.
Line: 15
Column: 1
import numpy as np
from pandas._libs.arrays import NDArrayBacked
from pandas._libs.tslibs import (
BaseOffset,
NaT,
NaTType,
Timedelta,
delta_to_nanoseconds,
Reported by Pylint.
Line: 15
Column: 1
import numpy as np
from pandas._libs.arrays import NDArrayBacked
from pandas._libs.tslibs import (
BaseOffset,
NaT,
NaTType,
Timedelta,
delta_to_nanoseconds,
Reported by Pylint.
Line: 27
Column: 1
period as libperiod,
to_offset,
)
from pandas._libs.tslibs.dtypes import FreqGroup
from pandas._libs.tslibs.fields import isleapyear_arr
from pandas._libs.tslibs.offsets import (
Tick,
delta_to_tick,
)
Reported by Pylint.
Line: 28
Column: 1
to_offset,
)
from pandas._libs.tslibs.dtypes import FreqGroup
from pandas._libs.tslibs.fields import isleapyear_arr
from pandas._libs.tslibs.offsets import (
Tick,
delta_to_tick,
)
from pandas._libs.tslibs.period import (
Reported by Pylint.
Line: 28
Column: 1
to_offset,
)
from pandas._libs.tslibs.dtypes import FreqGroup
from pandas._libs.tslibs.fields import isleapyear_arr
from pandas._libs.tslibs.offsets import (
Tick,
delta_to_tick,
)
from pandas._libs.tslibs.period import (
Reported by Pylint.
Line: 29
Column: 1
)
from pandas._libs.tslibs.dtypes import FreqGroup
from pandas._libs.tslibs.fields import isleapyear_arr
from pandas._libs.tslibs.offsets import (
Tick,
delta_to_tick,
)
from pandas._libs.tslibs.period import (
DIFFERENT_FREQ,
Reported by Pylint.
Line: 29
Column: 1
)
from pandas._libs.tslibs.dtypes import FreqGroup
from pandas._libs.tslibs.fields import isleapyear_arr
from pandas._libs.tslibs.offsets import (
Tick,
delta_to_tick,
)
from pandas._libs.tslibs.period import (
DIFFERENT_FREQ,
Reported by Pylint.
Line: 33
Column: 1
Tick,
delta_to_tick,
)
from pandas._libs.tslibs.period import (
DIFFERENT_FREQ,
IncompatibleFrequency,
Period,
get_period_field_arr,
period_asfreq_arr,
Reported by Pylint.
pandas/tests/io/pytables/test_select.py
79 issues
Line: 4
Column: 1
from warnings import catch_warnings
import numpy as np
import pytest
from pandas._libs.tslibs import Timestamp
import pandas as pd
from pandas import (
Reported by Pylint.
Line: 268
Column: 9
expected = df[df["A"] > 0]
store.append("df", df, data_columns=True)
np_zero = np.float64(0) # noqa
result = store.select("df", where=["A>np_zero"])
tm.assert_frame_equal(expected, result)
def test_select_with_many_inputs(setup_path):
Reported by Pylint.
Line: 662
Column: 32
tm.assert_frame_equal(result, expected)
def test_frame_select_complex2(setup_path):
with ensure_clean_path(["params.hdf", "hist.hdf"]) as paths:
pp, hh = paths
Reported by Pylint.
Line: 686
Column: 9
expected = read_hdf(hh, "df", where="l1=[2, 3, 4]")
# scope with list like
l = selection.index.tolist() # noqa
store = HDFStore(hh)
result = store.select("df", where="l1=l")
tm.assert_frame_equal(result, expected)
store.close()
Reported by Pylint.
Line: 696
Column: 9
tm.assert_frame_equal(result, expected)
# index
index = selection.index # noqa
result = read_hdf(hh, "df", where="l1=index")
tm.assert_frame_equal(result, expected)
result = read_hdf(hh, "df", where="l1=selection.index")
tm.assert_frame_equal(result, expected)
Reported by Pylint.
Line: 842
Column: 3
expected = concat([df1, df2], axis=1)
expected = expected[(expected.A > 0) & (expected.B > 0)]
tm.assert_frame_equal(result, expected, check_freq=False)
# FIXME: 2021-01-20 this is failing with freq None vs 4B on some builds
# multiple (diff selector)
result = store.select_as_multiple(
["df1", "df2"], where="index>df2.index[4]", selector="df2"
)
Reported by Pylint.
Line: 931
Column: 9
with ensure_clean_store(setup_path) as store:
store.append("test", df, format="table", data_columns=True)
ts = Timestamp("2014-01-01") # noqa
result = store.select("test", where="real_date > ts")
expected = df.loc[[1], :]
tm.assert_frame_equal(expected, result)
for op in ["<", ">", "=="]:
Reported by Pylint.
Line: 1
Column: 1
from warnings import catch_warnings
import numpy as np
import pytest
from pandas._libs.tslibs import Timestamp
import pandas as pd
from pandas import (
Reported by Pylint.
Line: 33
Column: 1
pytestmark = pytest.mark.single
def test_select_columns_in_where(setup_path):
# GH 6169
# recreate multi-indexes when columns is passed
# in the `where` argument
index = MultiIndex(
Reported by Pylint.
Line: 45
Column: 5
)
# With a DataFrame
df = DataFrame(np.random.randn(10, 3), index=index, columns=["A", "B", "C"])
with ensure_clean_store(setup_path) as store:
store.put("df", df, format="table")
expected = df[["A"]]
Reported by Pylint.
pandas/core/nanops.py
79 issues
Line: 16
Column: 1
from pandas._config import get_option
from pandas._libs import (
NaT,
NaTType,
Timedelta,
iNaT,
lib,
Reported by Pylint.
Line: 332
Column: 35
np.putmask(values, mask, fill_value)
else:
# np.where will promote if needed
values = np.where(~mask, values, fill_value)
# return a platform independent precision dtype
dtype_max = dtype
if is_integer_dtype(dtype) or is_bool_dtype(dtype):
dtype_max = np.dtype(np.int64)
Reported by Pylint.
Line: 332
Column: 35
np.putmask(values, mask, fill_value)
else:
# np.where will promote if needed
values = np.where(~mask, values, fill_value)
# return a platform independent precision dtype
dtype_max = dtype
if is_integer_dtype(dtype) or is_bool_dtype(dtype):
dtype_max = np.dtype(np.int64)
Reported by Pylint.
Line: 1524
Column: 9
def get_corr_func(method):
if method == "kendall":
from scipy.stats import kendalltau
def func(a, b):
return kendalltau(a, b)[0]
return func
Reported by Pylint.
Line: 1531
Column: 9
return func
elif method == "spearman":
from scipy.stats import spearmanr
def func(a, b):
return spearmanr(a, b)[0]
return func
Reported by Pylint.
Line: 66
Column: 5
def set_use_bottleneck(v: bool = True) -> None:
# set/unset to use bottleneck
global _USE_BOTTLENECK
if _BOTTLENECK_INSTALLED:
_USE_BOTTLENECK = v
set_use_bottleneck(get_option("compute.use_bottleneck"))
Reported by Pylint.
Line: 136
Column: 3
# We are empty, returning NA for our type
# Only applies for the default `min_count` of None
# since that affects how empty arrays are handled.
# TODO(GH-18976) update all the nanops methods to
# correctly handle empty inputs and remove this check.
# It *may* just be `var`
return _na_for_min_count(values, axis)
if _USE_BOTTLENECK and skipna and _bn_ok_dtype(values.dtype, bn_name):
Reported by Pylint.
Line: 999
Column: 23
mask: np.ndarray | None = None,
) -> Dtype:
values, mask, dtype, dtype_max, fill_value = _get_values(
values, skipna, fill_value_typ=fill_value_typ, mask=mask
)
if (axis is not None and values.shape[axis] == 0) or values.size == 0:
try:
Reported by Pylint.
Line: 999
Column: 41
mask: np.ndarray | None = None,
) -> Dtype:
values, mask, dtype, dtype_max, fill_value = _get_values(
values, skipna, fill_value_typ=fill_value_typ, mask=mask
)
if (axis is not None and values.shape[axis] == 0) or values.size == 0:
try:
Reported by Pylint.
Line: 1750
Column: 12
# We need to define mask before masking NaTs
mask = isna(values)
if accum_func == np.minimum.accumulate:
# Note: the accum_func comparison fails as an "is" comparison
y = values.view("i8")
y[mask] = lib.i8max
changed = True
else:
Reported by Pylint.
pandas/tests/series/test_logical_ops.py
79 issues
Line: 5
Column: 1
import operator
import numpy as np
import pytest
from pandas import (
DataFrame,
Index,
Series,
Reported by Pylint.
Line: 52
Column: 3
def test_logical_operators_int_dtype_with_int_dtype(self):
# GH#9016: support bitwise op for integer types
# TODO: unused
# s_0101 = Series([0, 1, 0, 1])
s_0123 = Series(range(4), dtype="int64")
s_3333 = Series([3] * 4)
s_4444 = Series([4] * 4)
Reported by Pylint.
Line: 94
Column: 13
msg = "Cannot perform.+with a dtyped.+array and scalar of type"
with pytest.raises(TypeError, match=msg):
s_0123 & np.NaN
with pytest.raises(TypeError, match=msg):
s_0123 & 3.14
msg = "unsupported operand type.+for &:"
with pytest.raises(TypeError, match=msg):
s_0123 & [0.1, 4, 3.14, 2]
Reported by Pylint.
Line: 96
Column: 13
with pytest.raises(TypeError, match=msg):
s_0123 & np.NaN
with pytest.raises(TypeError, match=msg):
s_0123 & 3.14
msg = "unsupported operand type.+for &:"
with pytest.raises(TypeError, match=msg):
s_0123 & [0.1, 4, 3.14, 2]
with pytest.raises(TypeError, match=msg):
s_0123 & np.array([0.1, 4, 3.14, 2])
Reported by Pylint.
Line: 99
Column: 13
s_0123 & 3.14
msg = "unsupported operand type.+for &:"
with pytest.raises(TypeError, match=msg):
s_0123 & [0.1, 4, 3.14, 2]
with pytest.raises(TypeError, match=msg):
s_0123 & np.array([0.1, 4, 3.14, 2])
with pytest.raises(TypeError, match=msg):
s_0123 & Series([0.1, 4, -3.14, 2])
Reported by Pylint.
Line: 101
Column: 13
with pytest.raises(TypeError, match=msg):
s_0123 & [0.1, 4, 3.14, 2]
with pytest.raises(TypeError, match=msg):
s_0123 & np.array([0.1, 4, 3.14, 2])
with pytest.raises(TypeError, match=msg):
s_0123 & Series([0.1, 4, -3.14, 2])
def test_logical_operators_int_dtype_with_str(self):
s_1111 = Series([1] * 4, dtype="int8")
Reported by Pylint.
Line: 103
Column: 13
with pytest.raises(TypeError, match=msg):
s_0123 & np.array([0.1, 4, 3.14, 2])
with pytest.raises(TypeError, match=msg):
s_0123 & Series([0.1, 4, -3.14, 2])
def test_logical_operators_int_dtype_with_str(self):
s_1111 = Series([1] * 4, dtype="int8")
msg = "Cannot perform 'and_' with a dtyped.+array and scalar of type"
with pytest.raises(TypeError, match=msg):
Reported by Pylint.
Line: 109
Column: 13
s_1111 = Series([1] * 4, dtype="int8")
msg = "Cannot perform 'and_' with a dtyped.+array and scalar of type"
with pytest.raises(TypeError, match=msg):
s_1111 & "a"
with pytest.raises(TypeError, match="unsupported operand.+for &"):
s_1111 & ["a", "b", "c", "d"]
def test_logical_operators_int_dtype_with_bool(self):
# GH#9016: support bitwise op for integer types
Reported by Pylint.
Line: 111
Column: 13
with pytest.raises(TypeError, match=msg):
s_1111 & "a"
with pytest.raises(TypeError, match="unsupported operand.+for &"):
s_1111 & ["a", "b", "c", "d"]
def test_logical_operators_int_dtype_with_bool(self):
# GH#9016: support bitwise op for integer types
s_0123 = Series(range(4), dtype="int64")
Reported by Pylint.
Line: 142
Column: 13
s_abNd = Series(["a", "b", np.NaN, "d"])
with pytest.raises(TypeError, match="unsupported.* 'int' and 'str'"):
s_0123 & s_abNd
def test_logical_operators_bool_dtype_with_int(self):
index = list("bca")
s_tft = Series([True, False, True], index=index)
Reported by Pylint.
pandas/tests/frame/indexing/test_getitem.py
79 issues
Line: 4
Column: 1
import re
import numpy as np
import pytest
from pandas import (
Categorical,
CategoricalDtype,
CategoricalIndex,
Reported by Pylint.
Line: 33
Column: 13
df = DataFrame(-1, index=range(3), columns=mi)
with pytest.raises(KeyError, match="notevenone"):
df["notevenone"]
def test_getitem_periodindex(self):
rng = period_range("1/1/2000", periods=5)
df = DataFrame(np.random.randn(10, 5), columns=rng)
Reported by Pylint.
Line: 84
Column: 13
# Check that we get the correct value in the KeyError
with pytest.raises(KeyError, match=r"\['y'\] not in index"):
df[["x", "y", "z"]]
def test_getitem_list_duplicates(self):
# GH#1943
df = DataFrame(np.random.randn(4, 4), columns=list("AABC"))
df.columns.name = "foo"
Reported by Pylint.
Line: 101
Column: 13
df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=["a", "a", "b"])
msg = "\"None of [Index(['baf'], dtype='object')] are in the [columns]\""
with pytest.raises(KeyError, match=re.escape(msg)):
df[["baf"]]
@pytest.mark.parametrize(
"idx_type",
[
list,
Reported by Pylint.
Line: 145
Column: 13
idx = idx_type(keys + [missing])
with pytest.raises(KeyError, match="not in index"):
frame[idx]
def test_getitem_iloc_generator(self):
# GH#39614
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
indexer = (x for x in [1, 2])
Reported by Pylint.
Line: 254
Column: 13
# name='B')
msg = "Unordered Categoricals can only compare equality or not"
with pytest.raises(TypeError, match=msg):
df4[df4.index < 2]
with pytest.raises(TypeError, match=msg):
df4[df4.index > 1]
@pytest.mark.parametrize(
"data1,data2,expected_data",
Reported by Pylint.
Line: 256
Column: 13
with pytest.raises(TypeError, match=msg):
df4[df4.index < 2]
with pytest.raises(TypeError, match=msg):
df4[df4.index > 1]
@pytest.mark.parametrize(
"data1,data2,expected_data",
(
(
Reported by Pylint.
Line: 305
Column: 17
msg = "cannot reindex on an axis with duplicate labels"
with pytest.raises(ValueError, match=msg):
with tm.assert_produces_warning(FutureWarning, match="non-unique"):
df[df.A > 6]
def test_getitem_boolean_series_with_duplicate_columns(self, df_dup_cols):
# boolean indexing
# GH#4879
df = DataFrame(
Reported by Pylint.
Line: 320
Column: 9
result = df[df.C > 6]
tm.assert_frame_equal(result, expected)
result.dtypes
str(result)
def test_getitem_boolean_frame_with_duplicate_columns(self, df_dup_cols):
# where
Reported by Pylint.
Line: 337
Column: 9
result = df[df > 6]
tm.assert_frame_equal(result, expected)
result.dtypes
str(result)
def test_getitem_empty_frame_with_boolean(self):
# Test for issue GH#11859
Reported by Pylint.
pandas/tests/tseries/offsets/test_week.py
79 issues
Line: 12
Column: 1
timedelta,
)
import pytest
from pandas._libs.tslibs import Timestamp
from pandas._libs.tslibs.offsets import (
Day,
LastWeekOfMonth,
Reported by Pylint.
Line: 15
Column: 1
import pytest
from pandas._libs.tslibs import Timestamp
from pandas._libs.tslibs.offsets import (
Day,
LastWeekOfMonth,
Week,
WeekOfMonth,
)
Reported by Pylint.
Line: 15
Column: 1
import pytest
from pandas._libs.tslibs import Timestamp
from pandas._libs.tslibs.offsets import (
Day,
LastWeekOfMonth,
Week,
WeekOfMonth,
)
Reported by Pylint.
Line: 150
Column: 13
offset = Week(weekday=1)
other = Day()
with pytest.raises(TypeError, match="Cannot add"):
offset + other
class TestWeekOfMonth(Base):
_offset = WeekOfMonth
offset1 = _offset()
Reported by Pylint.
Line: 30
Column: 1
)
class TestWeek(Base):
_offset = Week
d = Timestamp(datetime(2008, 1, 2))
offset1 = _offset()
offset2 = _offset(2)
Reported by Pylint.
Line: 36
Column: 5
offset1 = _offset()
offset2 = _offset(2)
def test_repr(self):
assert repr(Week(weekday=0)) == "<Week: weekday=0>"
assert repr(Week(n=-1, weekday=0)) == "<-1 * Week: weekday=0>"
assert repr(Week(n=-2, weekday=0)) == "<-2 * Weeks: weekday=0>"
def test_corner(self):
Reported by Pylint.
Line: 36
Column: 5
offset1 = _offset()
offset2 = _offset(2)
def test_repr(self):
assert repr(Week(weekday=0)) == "<Week: weekday=0>"
assert repr(Week(n=-1, weekday=0)) == "<-1 * Week: weekday=0>"
assert repr(Week(n=-2, weekday=0)) == "<-2 * Weeks: weekday=0>"
def test_corner(self):
Reported by Pylint.
Line: 37
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
offset2 = _offset(2)
def test_repr(self):
assert repr(Week(weekday=0)) == "<Week: weekday=0>"
assert repr(Week(n=-1, weekday=0)) == "<-1 * Week: weekday=0>"
assert repr(Week(n=-2, weekday=0)) == "<-2 * Weeks: weekday=0>"
def test_corner(self):
with pytest.raises(ValueError, match="Day must be"):
Reported by Bandit.
Line: 38
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
def test_repr(self):
assert repr(Week(weekday=0)) == "<Week: weekday=0>"
assert repr(Week(n=-1, weekday=0)) == "<-1 * Week: weekday=0>"
assert repr(Week(n=-2, weekday=0)) == "<-2 * Weeks: weekday=0>"
def test_corner(self):
with pytest.raises(ValueError, match="Day must be"):
Week(weekday=7)
Reported by Bandit.
Line: 39
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
def test_repr(self):
assert repr(Week(weekday=0)) == "<Week: weekday=0>"
assert repr(Week(n=-1, weekday=0)) == "<-1 * Week: weekday=0>"
assert repr(Week(n=-2, weekday=0)) == "<-2 * Weeks: weekday=0>"
def test_corner(self):
with pytest.raises(ValueError, match="Day must be"):
Week(weekday=7)
Reported by Bandit.
pandas/tests/extension/json/test_json.py
78 issues
Line: 4
Column: 1
import collections
import operator
import pytest
import pandas as pd
import pandas._testing as tm
from pandas.tests.extension import base
from pandas.tests.extension.json.array import (
Reported by Pylint.
Line: 154
Column: 9
)
def test_contains(self, data):
# GH-37867
super().test_contains(data)
class TestConstructors(BaseJSON, base.BaseConstructorsTests):
@pytest.mark.skip(reason="not implemented constructor from dtype")
def test_from_dtype(self, data):
Reported by Pylint.
Line: 192
Column: 16
def test_unstack(self, data, index):
# The base test has NaN for the expected NA value.
# this matches otherwise
return super().test_unstack(data, index)
class TestGetitem(BaseJSON, base.BaseGetitemTests):
pass
Reported by Pylint.
Line: 269
Column: 9
# Fails with
# *** ValueError: operands could not be broadcast together
# with shapes (4,) (4,) (0,)
super().test_where_series(data, na_value)
@pytest.mark.skip(reason="Can't compare dicts.")
def test_searchsorted(self, data_for_sorting):
super().test_searchsorted(data_for_sorting)
Reported by Pylint.
Line: 273
Column: 9
@pytest.mark.skip(reason="Can't compare dicts.")
def test_searchsorted(self, data_for_sorting):
super().test_searchsorted(data_for_sorting)
@pytest.mark.skip(reason="Can't compare dicts.")
def test_equals(self, data, na_value, as_series):
pass
Reported by Pylint.
Line: 24
Column: 5
@pytest.fixture
def data():
"""Length-100 PeriodArray for semantics test."""
data = make_data()
# Why the while loop? NumPy is unable to construct an ndarray from
# equal-length ndarrays. Many of our operations involve coercing the
# EA to an ndarray of objects. To avoid random test failures, we ensure
# that our data is coercible to an ndarray. Several tests deal with only
Reported by Pylint.
Line: 55
Column: 14
@pytest.fixture
def na_value(dtype):
return dtype.na_value
@pytest.fixture
def na_cmp():
Reported by Pylint.
Line: 130
Column: 9
def test_custom_asserts(self):
# This would always trigger the KeyError from trying to put
# an array of equal-length UserDicts inside an ndarray.
data = JSONArray(
[
collections.UserDict({"a": 1}),
collections.UserDict({"b": 2}),
collections.UserDict({"c": 3}),
]
Reported by Pylint.
Line: 151
Column: 5
@pytest.mark.xfail(
reason="comparison method not implemented for JSONArray (GH-37867)"
)
def test_contains(self, data):
# GH-37867
super().test_contains(data)
Reported by Pylint.
Line: 152
Column: 29
@pytest.mark.xfail(
reason="comparison method not implemented for JSONArray (GH-37867)"
)
def test_contains(self, data):
# GH-37867
super().test_contains(data)
class TestConstructors(BaseJSON, base.BaseConstructorsTests):
Reported by Pylint.