The following issues were found
scripts/tests/test_validate_docstrings.py
57 issues
Line: 4
Column: 1
import io
import textwrap
import pytest
from .. import validate_docstrings
class BadDocstrings:
Reported by Pylint.
Line: 6
Column: 1
import pytest
from .. import validate_docstrings
class BadDocstrings:
"""Everything here has a bad docstring"""
Reported by Pylint.
Line: 26
Column: 9
pandas.Series.rename : Alter Series index labels or name.
DataFrame.head : The first `n` rows of the caller object.
"""
pass
def redundant_import(self, foo=None, bar=None):
"""
A sample DataFrame method.
Reported by Pylint.
Line: 48
Column: 9
>>> df.all(bool_only=True)
Series([], dtype: bool)
"""
pass
def unused_import(self):
"""
Examples
--------
Reported by Pylint.
Line: 57
Column: 9
>>> import pandas as pdf
>>> df = pd.DataFrame(np.ones((3, 3)), columns=('a', 'b', 'c'))
"""
pass
def missing_whitespace_around_arithmetic_operator(self):
"""
Examples
--------
Reported by Pylint.
Line: 66
Column: 9
>>> 2+5
7
"""
pass
def indentation_is_not_a_multiple_of_four(self):
"""
Examples
--------
Reported by Pylint.
Line: 75
Column: 9
>>> if 2 + 5:
... pass
"""
pass
def missing_whitespace_after_comma(self):
"""
Examples
--------
Reported by Pylint.
Line: 83
Column: 9
--------
>>> df = pd.DataFrame(np.ones((3,3)),columns=('a','b', 'c'))
"""
pass
def write_array_like_with_hyphen_not_underscore(self):
"""
In docstrings, use array-like over array_like
"""
Reported by Pylint.
Line: 89
Column: 9
"""
In docstrings, use array-like over array_like
"""
pass
class TestValidator:
def _import_path(self, klass=None, func=None):
"""
Reported by Pylint.
Line: 119
Column: 30
return base_path
def test_bad_class(self, capsys):
errors = validate_docstrings.pandas_validate(
self._import_path(klass="BadDocstrings")
)["errors"]
assert isinstance(errors, list)
assert errors
Reported by Pylint.
pandas/tests/window/test_api.py
57 issues
Line: 2
Column: 1
import numpy as np
import pytest
from pandas import (
DataFrame,
Index,
MultiIndex,
Period,
Series,
Reported by Pylint.
Line: 22
Column: 27
def test_getitem():
frame = DataFrame(np.random.randn(5, 5))
r = frame.rolling(window=5)
tm.assert_index_equal(r._selected_obj.columns, frame.columns)
r = frame.rolling(window=5)[1]
assert r._selected_obj.name == frame.columns[1]
# technically this is allowed
Reported by Pylint.
Line: 25
Column: 12
tm.assert_index_equal(r._selected_obj.columns, frame.columns)
r = frame.rolling(window=5)[1]
assert r._selected_obj.name == frame.columns[1]
# technically this is allowed
r = frame.rolling(window=5)[1, 3]
tm.assert_index_equal(r._selected_obj.columns, frame.columns[[1, 3]])
Reported by Pylint.
Line: 29
Column: 27
# technically this is allowed
r = frame.rolling(window=5)[1, 3]
tm.assert_index_equal(r._selected_obj.columns, frame.columns[[1, 3]])
r = frame.rolling(window=5)[[1, 3]]
tm.assert_index_equal(r._selected_obj.columns, frame.columns[[1, 3]])
Reported by Pylint.
Line: 32
Column: 27
tm.assert_index_equal(r._selected_obj.columns, frame.columns[[1, 3]])
r = frame.rolling(window=5)[[1, 3]]
tm.assert_index_equal(r._selected_obj.columns, frame.columns[[1, 3]])
def test_select_bad_cols():
df = DataFrame([[1, 2]], columns=["A", "B"])
g = df.rolling(window=5)
Reported by Pylint.
Line: 39
Column: 9
df = DataFrame([[1, 2]], columns=["A", "B"])
g = df.rolling(window=5)
with pytest.raises(KeyError, match="Columns not found: 'C'"):
g[["C"]]
with pytest.raises(KeyError, match="^[^A]+$"):
# A should not be referenced as a bad column...
# will have to rethink regex if you change message!
g[["A", "C"]]
Reported by Pylint.
Line: 43
Column: 9
with pytest.raises(KeyError, match="^[^A]+$"):
# A should not be referenced as a bad column...
# will have to rethink regex if you change message!
g[["A", "C"]]
def test_attribute_access():
df = DataFrame([[1, 2]], columns=["A", "B"])
Reported by Pylint.
Line: 53
Column: 9
tm.assert_series_equal(r.A.sum(), r["A"].sum())
msg = "'Rolling' object has no attribute 'F'"
with pytest.raises(AttributeError, match=msg):
r.F
def tests_skip_nuisance():
df = DataFrame({"A": range(5), "B": range(5, 10), "C": "foo"})
Reported by Pylint.
Line: 342
Column: 59
roll_obj = Series(range(1)).rolling(
1, center=center, closed=closed, min_periods=min_periods
)
expected = {attr: getattr(roll_obj, attr) for attr in roll_obj._attributes}
getattr(roll_obj, arithmetic_win_operators)()
result = {attr: getattr(roll_obj, attr) for attr in roll_obj._attributes}
assert result == expected
Reported by Pylint.
Line: 344
Column: 57
)
expected = {attr: getattr(roll_obj, attr) for attr in roll_obj._attributes}
getattr(roll_obj, arithmetic_win_operators)()
result = {attr: getattr(roll_obj, attr) for attr in roll_obj._attributes}
assert result == expected
Reported by Pylint.
pandas/tests/io/formats/test_to_string.py
57 issues
Line: 6
Column: 1
from textwrap import dedent
import numpy as np
import pytest
from pandas import (
DataFrame,
Series,
option_context,
Reported by Pylint.
Line: 1
Column: 1
from datetime import datetime
from io import StringIO
from textwrap import dedent
import numpy as np
import pytest
from pandas import (
DataFrame,
Reported by Pylint.
Line: 16
Column: 1
)
def test_repr_embedded_ndarray():
arr = np.empty(10, dtype=[("err", object)])
for i in range(len(arr)):
arr["err"][i] = np.random.randn(i)
df = DataFrame(arr)
Reported by Pylint.
Line: 21
Column: 5
for i in range(len(arr)):
arr["err"][i] = np.random.randn(i)
df = DataFrame(arr)
repr(df["err"])
repr(df)
df.to_string()
Reported by Pylint.
Line: 27
Column: 1
df.to_string()
def test_repr_tuples():
buf = StringIO()
df = DataFrame({"tups": list(zip(range(10), range(10)))})
repr(df)
df.to_string(col_space=10, buf=buf)
Reported by Pylint.
Line: 30
Column: 5
def test_repr_tuples():
buf = StringIO()
df = DataFrame({"tups": list(zip(range(10), range(10)))})
repr(df)
df.to_string(col_space=10, buf=buf)
def test_to_string_truncate():
Reported by Pylint.
Line: 35
Column: 1
df.to_string(col_space=10, buf=buf)
def test_to_string_truncate():
# GH 9784 - dont truncate when calling DataFrame.to_string
df = DataFrame(
[
{
"a": "foo",
Reported by Pylint.
Line: 37
Column: 5
def test_to_string_truncate():
# GH 9784 - dont truncate when calling DataFrame.to_string
df = DataFrame(
[
{
"a": "foo",
"b": "bar",
"c": "let's make this a very VERY long line that is longer "
Reported by Pylint.
Line: 50
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
]
)
df.set_index(["a", "b", "c"])
assert df.to_string() == (
" a b "
" c d\n"
"0 foo bar let's make this a very VERY long line t"
"hat is longer than the default 50 character limit 1\n"
"1 foo bar "
Reported by Bandit.
Line: 60
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
)
with option_context("max_colwidth", 20):
# the display option has no effect on the to_string method
assert df.to_string() == (
" a b "
" c d\n"
"0 foo bar let's make this a very VERY long line t"
"hat is longer than the default 50 character limit 1\n"
"1 foo bar "
Reported by Bandit.
pandas/io/formats/xml.py
57 issues
Line: 299
Column: 9
self.prefix_uri = self.get_prefix_uri()
def build_tree(self) -> bytes:
from xml.etree.ElementTree import (
Element,
SubElement,
tostring,
)
Reported by Pylint.
Line: 339
Column: 9
return self.out_xml
def get_prefix_uri(self) -> str:
from xml.etree.ElementTree import register_namespace
uri = ""
if self.namespaces:
for p, n in self.namespaces.items():
if isinstance(p, str) and isinstance(n, str):
Reported by Pylint.
Line: 382
Column: 9
raise KeyError(f"no valid column, {col}")
def build_elems(self) -> None:
from xml.etree.ElementTree import SubElement
if not self.elem_cols:
return
for col in self.elem_cols:
Reported by Pylint.
Line: 414
Column: 9
This method will pretty print xml with line breaks and indentation.
"""
from xml.dom.minidom import parseString
dom = parseString(self.out_xml)
return dom.toprettyxml(indent=" ", encoding=self.encoding)
Reported by Pylint.
Line: 471
Column: 9
This method initializes the root and builds attributes and elements
with optional namespaces.
"""
from lxml.etree import (
Element,
SubElement,
tostring,
)
Reported by Pylint.
Line: 554
Column: 9
raise KeyError(f"no valid column, {col}")
def build_elems(self) -> None:
from lxml.etree import SubElement
if not self.elem_cols:
return
for col in self.elem_cols:
Reported by Pylint.
Line: 588
Column: 9
original tree with XSLT script.
"""
from lxml.etree import (
XSLT,
XMLParser,
fromstring,
parse,
)
Reported by Pylint.
Line: 267
Column: 9
def write_output(self) -> str | None:
xml_doc = self.build_tree()
out_str: str | None
if self.path_or_buffer is not None:
with get_handle(
self.path_or_buffer,
"wb",
Reported by Pylint.
Line: 305
Column: 9
tostring,
)
self.root = Element(
f"{self.prefix_uri}{self.root_name}", attrib=self.other_namespaces()
)
for d in self.frame_dicts.values():
self.d = d
Reported by Pylint.
Line: 310
Column: 13
)
for d in self.frame_dicts.values():
self.d = d
self.elem_row = SubElement(self.root, f"{self.prefix_uri}{self.row_name}")
if not self.attr_cols and not self.elem_cols:
self.elem_cols = list(self.d.keys())
self.build_elems()
Reported by Pylint.
pandas/tests/frame/methods/test_transpose.py
56 issues
Line: 2
Column: 1
import numpy as np
import pytest
import pandas.util._test_decorators as td
from pandas import (
DataFrame,
date_range,
)
Reported by Pylint.
Line: 35
Column: 16
def test_transpose_tzaware_2col_mixed_tz(self):
# GH#26825
dti = date_range("2016-04-05 04:30", periods=3, tz="UTC")
dti2 = dti.tz_convert("US/Pacific")
df4 = DataFrame({"A": dti, "B": dti2})
assert (df4.dtypes == [dti.dtype, dti2.dtype]).all()
assert (df4.T.dtypes == object).all()
tm.assert_frame_equal(df4.T.T, df4)
Reported by Pylint.
Line: 35
Column: 16
def test_transpose_tzaware_2col_mixed_tz(self):
# GH#26825
dti = date_range("2016-04-05 04:30", periods=3, tz="UTC")
dti2 = dti.tz_convert("US/Pacific")
df4 = DataFrame({"A": dti, "B": dti2})
assert (df4.dtypes == [dti.dtype, dti2.dtype]).all()
assert (df4.T.dtypes == object).all()
tm.assert_frame_equal(df4.T.T, df4)
Reported by Pylint.
Line: 54
Column: 16
def test_transpose_object_to_tzaware_mixed_tz(self):
# GH#26825
dti = date_range("2016-04-05 04:30", periods=3, tz="UTC")
dti2 = dti.tz_convert("US/Pacific")
# mixed all-tzaware dtypes
df2 = DataFrame([dti, dti2])
assert (df2.dtypes == object).all()
res2 = df2.T
Reported by Pylint.
Line: 54
Column: 16
def test_transpose_object_to_tzaware_mixed_tz(self):
# GH#26825
dti = date_range("2016-04-05 04:30", periods=3, tz="UTC")
dti2 = dti.tz_convert("US/Pacific")
# mixed all-tzaware dtypes
df2 = DataFrame([dti, dti2])
assert (df2.dtypes == object).all()
res2 = df2.T
Reported by Pylint.
Line: 19
Column: 17
dti = date_range("2016-04-05 04:30", periods=3, tz="UTC")
df = DataFrame(dti)
assert (df.dtypes == dti.dtype).all()
res = df.T
assert (res.dtypes == dti.dtype).all()
def test_transpose_tzaware_2col_single_tz(self):
# GH#26825
Reported by Pylint.
Line: 21
Column: 17
df = DataFrame(dti)
assert (df.dtypes == dti.dtype).all()
res = df.T
assert (res.dtypes == dti.dtype).all()
def test_transpose_tzaware_2col_single_tz(self):
# GH#26825
dti = date_range("2016-04-05 04:30", periods=3, tz="UTC")
Reported by Pylint.
Line: 28
Column: 17
dti = date_range("2016-04-05 04:30", periods=3, tz="UTC")
df3 = DataFrame({"A": dti, "B": dti})
assert (df3.dtypes == dti.dtype).all()
res3 = df3.T
assert (res3.dtypes == dti.dtype).all()
def test_transpose_tzaware_2col_mixed_tz(self):
# GH#26825
Reported by Pylint.
Line: 30
Column: 17
df3 = DataFrame({"A": dti, "B": dti})
assert (df3.dtypes == dti.dtype).all()
res3 = df3.T
assert (res3.dtypes == dti.dtype).all()
def test_transpose_tzaware_2col_mixed_tz(self):
# GH#26825
dti = date_range("2016-04-05 04:30", periods=3, tz="UTC")
dti2 = dti.tz_convert("US/Pacific")
Reported by Pylint.
Line: 97
Column: 15
@td.skip_array_manager_invalid_test
def test_transpose_get_view_dt64tzget_view(self):
dti = date_range("2016-01-01", periods=6, tz="US/Pacific")
arr = dti._data.reshape(3, 2)
df = DataFrame(arr)
assert df._mgr.nblocks == 1
result = df.T
assert result._mgr.nblocks == 1
Reported by Pylint.
pandas/tests/arrays/test_numpy.py
56 issues
Line: 6
Column: 1
the interface tests.
"""
import numpy as np
import pytest
from pandas.core.dtypes.dtypes import PandasDtype
import pandas as pd
import pandas._testing as tm
Reported by Pylint.
Line: 56
Column: 12
)
def test_is_numeric(dtype, expected):
dtype = PandasDtype(dtype)
assert dtype._is_numeric is expected
@pytest.mark.parametrize(
"dtype, expected",
[
Reported by Pylint.
Line: 76
Column: 12
)
def test_is_boolean(dtype, expected):
dtype = PandasDtype(dtype)
assert dtype._is_boolean is expected
def test_repr():
dtype = PandasDtype(np.dtype("int64"))
assert repr(dtype) == "PandasDtype('int64')"
Reported by Pylint.
Line: 122
Column: 14
def test_from_sequence_dtype():
arr = np.array([1, 2, 3], dtype="int64")
result = PandasArray._from_sequence(arr, dtype="uint64")
expected = PandasArray(np.array([1, 2, 3], dtype="uint64"))
tm.assert_extension_array_equal(result, expected)
def test_constructor_copy():
Reported by Pylint.
Line: 131
Column: 29
arr = np.array([0, 1])
result = PandasArray(arr, copy=True)
assert np.shares_memory(result._ndarray, arr) is False
def test_constructor_with_data(any_numpy_array):
nparr = any_numpy_array
arr = PandasArray(nparr)
Reported by Pylint.
Line: 134
Column: 32
assert np.shares_memory(result._ndarray, arr) is False
def test_constructor_with_data(any_numpy_array):
nparr = any_numpy_array
arr = PandasArray(nparr)
assert arr.dtype.numpy_dtype == nparr.dtype
Reported by Pylint.
Line: 147
Column: 22
def test_to_numpy():
arr = PandasArray(np.array([1, 2, 3]))
result = arr.to_numpy()
assert result is arr._ndarray
result = arr.to_numpy(copy=True)
assert result is not arr._ndarray
result = arr.to_numpy(dtype="f8")
Reported by Pylint.
Line: 150
Column: 26
assert result is arr._ndarray
result = arr.to_numpy(copy=True)
assert result is not arr._ndarray
result = arr.to_numpy(dtype="f8")
expected = np.array([1, 2, 3], dtype="f8")
tm.assert_numpy_array_equal(result, expected)
Reported by Pylint.
Line: 168
Column: 18
tm.assert_series_equal(ser, expected)
def test_setitem(any_numpy_array):
nparr = any_numpy_array
arr = PandasArray(nparr, copy=True)
arr[0] = arr[1]
nparr[0] = nparr[1]
Reported by Pylint.
Line: 187
Column: 9
arr = PandasArray(arr)
msg = "cannot perform not_a_method with type int"
with pytest.raises(TypeError, match=msg):
arr._reduce(msg)
def test_validate_reduction_keyword_args():
arr = PandasArray(np.array([1, 2, 3]))
msg = "the 'keepdims' parameter is not supported .*all"
Reported by Pylint.
pandas/tests/arrays/integer/test_construction.py
56 issues
Line: 2
Column: 1
import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
from pandas.api.types import is_integer
from pandas.core.arrays import IntegerArray
from pandas.core.arrays.integer import (
Int8Dtype,
Reported by Pylint.
Line: 91
Column: 9
IntegerArray(values.astype(float), mask)
msg = r"__init__\(\) missing 1 required positional argument: 'mask'"
with pytest.raises(TypeError, match=msg):
IntegerArray(values)
def test_integer_array_constructor_copy():
values = np.array([1, 2, 3, 4], dtype="int64")
mask = np.array([False, False, False, True], dtype="bool")
Reported by Pylint.
Line: 15
Column: 35
)
@pytest.fixture(params=[pd.array, IntegerArray._from_sequence])
def constructor(request):
return request.param
def test_uses_pandas_na():
Reported by Pylint.
Line: 99
Column: 12
mask = np.array([False, False, False, True], dtype="bool")
result = IntegerArray(values, mask)
assert result._data is values
assert result._mask is mask
result = IntegerArray(values, mask, copy=True)
assert result._data is not values
assert result._mask is not mask
Reported by Pylint.
Line: 100
Column: 12
result = IntegerArray(values, mask)
assert result._data is values
assert result._mask is mask
result = IntegerArray(values, mask, copy=True)
assert result._data is not values
assert result._mask is not mask
Reported by Pylint.
Line: 103
Column: 12
assert result._mask is mask
result = IntegerArray(values, mask, copy=True)
assert result._data is not values
assert result._mask is not mask
@pytest.mark.parametrize(
"a, b",
Reported by Pylint.
Line: 104
Column: 12
result = IntegerArray(values, mask, copy=True)
assert result._data is not values
assert result._mask is not mask
@pytest.mark.parametrize(
"a, b",
[
Reported by Pylint.
Line: 147
Column: 9
pd.array(values, dtype="Int64")
with pytest.raises(TypeError, match=msg):
IntegerArray._from_sequence(values)
def test_to_integer_array_inferred_dtype(constructor):
# if values has dtype -> respect it
result = constructor(np.array([1, 2], dtype="int8"))
Reported by Pylint.
Line: 150
Column: 42
IntegerArray._from_sequence(values)
def test_to_integer_array_inferred_dtype(constructor):
# if values has dtype -> respect it
result = constructor(np.array([1, 2], dtype="int8"))
assert result.dtype == Int8Dtype()
result = constructor(np.array([1, 2], dtype="int32"))
assert result.dtype == Int32Dtype()
Reported by Pylint.
Line: 162
Column: 41
assert result.dtype == Int64Dtype()
def test_to_integer_array_dtype_keyword(constructor):
result = constructor([1, 2], dtype="Int8")
assert result.dtype == Int8Dtype()
# if values has dtype -> override it
result = constructor(np.array([1, 2], dtype="int8"), dtype="Int32")
Reported by Pylint.
pandas/tseries/frequencies.py
56 issues
Line: 7
Column: 1
import numpy as np
from pandas._libs.algos import unique_deltas
from pandas._libs.tslibs import (
Timestamp,
tzconversion,
)
from pandas._libs.tslibs.ccalendar import (
Reported by Pylint.
Line: 7
Column: 1
import numpy as np
from pandas._libs.algos import unique_deltas
from pandas._libs.tslibs import (
Timestamp,
tzconversion,
)
from pandas._libs.tslibs.ccalendar import (
Reported by Pylint.
Line: 8
Column: 1
import numpy as np
from pandas._libs.algos import unique_deltas
from pandas._libs.tslibs import (
Timestamp,
tzconversion,
)
from pandas._libs.tslibs.ccalendar import (
DAYS,
Reported by Pylint.
Line: 12
Column: 1
Timestamp,
tzconversion,
)
from pandas._libs.tslibs.ccalendar import (
DAYS,
MONTH_ALIASES,
MONTH_NUMBERS,
MONTHS,
int_to_weekday,
Reported by Pylint.
Line: 12
Column: 1
Timestamp,
tzconversion,
)
from pandas._libs.tslibs.ccalendar import (
DAYS,
MONTH_ALIASES,
MONTH_NUMBERS,
MONTHS,
int_to_weekday,
Reported by Pylint.
Line: 19
Column: 1
MONTHS,
int_to_weekday,
)
from pandas._libs.tslibs.fields import (
build_field_sarray,
month_position_check,
)
from pandas._libs.tslibs.offsets import ( # noqa:F401
DateOffset,
Reported by Pylint.
Line: 19
Column: 1
MONTHS,
int_to_weekday,
)
from pandas._libs.tslibs.fields import (
build_field_sarray,
month_position_check,
)
from pandas._libs.tslibs.offsets import ( # noqa:F401
DateOffset,
Reported by Pylint.
Line: 23
Column: 1
build_field_sarray,
month_position_check,
)
from pandas._libs.tslibs.offsets import ( # noqa:F401
DateOffset,
Day,
_get_offset,
to_offset,
)
Reported by Pylint.
Line: 23
Column: 1
build_field_sarray,
month_position_check,
)
from pandas._libs.tslibs.offsets import ( # noqa:F401
DateOffset,
Day,
_get_offset,
to_offset,
)
Reported by Pylint.
Line: 29
Column: 1
_get_offset,
to_offset,
)
from pandas._libs.tslibs.parsing import get_rule_month
from pandas.util._decorators import cache_readonly
from pandas.core.dtypes.common import (
is_datetime64_dtype,
is_period_dtype,
Reported by Pylint.
pandas/tests/series/methods/test_drop_duplicates.py
56 issues
Line: 2
Column: 1
import numpy as np
import pytest
from pandas import (
Categorical,
Series,
)
import pandas._testing as tm
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
from pandas import (
Categorical,
Series,
)
import pandas._testing as tm
Reported by Pylint.
Line: 17
Column: 1
("first", Series([False, False, False, False, True, True, False])),
("last", Series([False, True, True, False, False, False, False])),
(False, Series([False, True, True, False, True, True, False])),
],
)
def test_drop_duplicates(any_numpy_dtype, keep, expected):
tc = Series([1, 0, 3, 5, 3, 0, 4], dtype=np.dtype(any_numpy_dtype))
if tc.dtype == "bool":
Reported by Pylint.
Line: 20
Column: 5
],
)
def test_drop_duplicates(any_numpy_dtype, keep, expected):
tc = Series([1, 0, 3, 5, 3, 0, 4], dtype=np.dtype(any_numpy_dtype))
if tc.dtype == "bool":
pytest.skip("tested separately in test_drop_duplicates_bool")
tm.assert_series_equal(tc.duplicated(keep=keep), expected)
Reported by Pylint.
Line: 27
Column: 5
tm.assert_series_equal(tc.duplicated(keep=keep), expected)
tm.assert_series_equal(tc.drop_duplicates(keep=keep), tc[~expected])
sc = tc.copy()
return_value = sc.drop_duplicates(keep=keep, inplace=True)
assert return_value is None
tm.assert_series_equal(sc, tc[~expected])
Reported by Pylint.
Line: 29
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
tm.assert_series_equal(tc.drop_duplicates(keep=keep), tc[~expected])
sc = tc.copy()
return_value = sc.drop_duplicates(keep=keep, inplace=True)
assert return_value is None
tm.assert_series_equal(sc, tc[~expected])
@pytest.mark.parametrize(
"keep, expected",
Reported by Bandit.
Line: 39
Column: 1
("first", Series([False, False, True, True])),
("last", Series([True, True, False, False])),
(False, Series([True, True, True, True])),
],
)
def test_drop_duplicates_bool(keep, expected):
tc = Series([True, False, True, False])
tm.assert_series_equal(tc.duplicated(keep=keep), expected)
Reported by Pylint.
Line: 42
Column: 5
],
)
def test_drop_duplicates_bool(keep, expected):
tc = Series([True, False, True, False])
tm.assert_series_equal(tc.duplicated(keep=keep), expected)
tm.assert_series_equal(tc.drop_duplicates(keep=keep), tc[~expected])
sc = tc.copy()
return_value = sc.drop_duplicates(keep=keep, inplace=True)
Reported by Pylint.
Line: 46
Column: 5
tm.assert_series_equal(tc.duplicated(keep=keep), expected)
tm.assert_series_equal(tc.drop_duplicates(keep=keep), tc[~expected])
sc = tc.copy()
return_value = sc.drop_duplicates(keep=keep, inplace=True)
tm.assert_series_equal(sc, tc[~expected])
assert return_value is None
Reported by Pylint.
Line: 49
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
sc = tc.copy()
return_value = sc.drop_duplicates(keep=keep, inplace=True)
tm.assert_series_equal(sc, tc[~expected])
assert return_value is None
@pytest.mark.parametrize("values", [[], list(range(5))])
def test_drop_duplicates_no_duplicates(any_numpy_dtype, keep, values):
tc = Series(values, dtype=np.dtype(any_numpy_dtype))
Reported by Bandit.
pandas/tests/io/pytables/test_timezones.py
55 issues
Line: 7
Column: 1
)
import numpy as np
import pytest
from pandas._libs.tslibs.timezones import maybe_get_tz
import pandas.util._test_decorators as td
import pandas as pd
Reported by Pylint.
Line: 9
Column: 1
import numpy as np
import pytest
from pandas._libs.tslibs.timezones import maybe_get_tz
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
DataFrame,
Reported by Pylint.
Line: 9
Column: 1
import numpy as np
import pytest
from pandas._libs.tslibs.timezones import maybe_get_tz
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
DataFrame,
Reported by Pylint.
Line: 137
Column: 11
# GH#4098 example
dti = date_range("2000-1-1", periods=3, freq="H", tz=gettz("US/Eastern"))
dti = dti._with_freq(None) # freq doesn't round-trip
df = DataFrame({"A": Series(range(3), index=dti)})
with ensure_clean_store(setup_path) as store:
Reported by Pylint.
Line: 137
Column: 11
# GH#4098 example
dti = date_range("2000-1-1", periods=3, freq="H", tz=gettz("US/Eastern"))
dti = dti._with_freq(None) # freq doesn't round-trip
df = DataFrame({"A": Series(range(3), index=dti)})
with ensure_clean_store(setup_path) as store:
Reported by Pylint.
Line: 191
Column: 16
with ensure_clean_store(setup_path) as store:
store.append("frame", frame)
result = store.select_column("frame", "index")
assert rng.tz == DatetimeIndex(result.values).tz
# check utc
rng = date_range("1/1/2000", "1/30/2000", tz="UTC")
frame = DataFrame(np.random.randn(len(rng), 4), index=rng)
Reported by Pylint.
Line: 191
Column: 16
with ensure_clean_store(setup_path) as store:
store.append("frame", frame)
result = store.select_column("frame", "index")
assert rng.tz == DatetimeIndex(result.values).tz
# check utc
rng = date_range("1/1/2000", "1/30/2000", tz="UTC")
frame = DataFrame(np.random.randn(len(rng), 4), index=rng)
Reported by Pylint.
Line: 200
Column: 16
with ensure_clean_store(setup_path) as store:
store.append("frame", frame)
result = store.select_column("frame", "index")
assert rng.tz == result.dt.tz
# double check non-utc
rng = date_range("1/1/2000", "1/30/2000", tz="US/Eastern")
frame = DataFrame(np.random.randn(len(rng), 4), index=rng)
Reported by Pylint.
Line: 200
Column: 16
with ensure_clean_store(setup_path) as store:
store.append("frame", frame)
result = store.select_column("frame", "index")
assert rng.tz == result.dt.tz
# double check non-utc
rng = date_range("1/1/2000", "1/30/2000", tz="US/Eastern")
frame = DataFrame(np.random.randn(len(rng), 4), index=rng)
Reported by Pylint.
Line: 209
Column: 16
with ensure_clean_store(setup_path) as store:
store.append("frame", frame)
result = store.select_column("frame", "index")
assert rng.tz == result.dt.tz
def test_timezones_fixed_format_frame_non_empty(setup_path):
with ensure_clean_store(setup_path) as store:
Reported by Pylint.