The following issues were found
pandas/io/formats/excel.py
54 issues
Line: 21
Column: 1
import numpy as np
from pandas._libs.lib import is_list_like
from pandas._typing import (
IndexLabel,
StorageOptions,
)
from pandas.util._decorators import doc
Reported by Pylint.
Line: 21
Column: 1
import numpy as np
from pandas._libs.lib import is_list_like
from pandas._typing import (
IndexLabel,
StorageOptions,
)
from pandas.util._decorators import doc
Reported by Pylint.
Line: 834
Column: 22
else:
# error: Cannot instantiate abstract class 'ExcelWriter' with abstract
# attributes 'engine', 'save', 'supported_extensions' and 'write_cells'
writer = ExcelWriter( # type: ignore[abstract]
writer, engine=engine, storage_options=storage_options
)
need_save = True
try:
Reported by Pylint.
Line: 162
Column: 3
A style as interpreted by ExcelWriter when found in
ExcelCell.style.
"""
# TODO: memoize?
properties = self.compute_css(declarations_str, self.inherited)
return self.build_xlstyle(properties)
def build_xlstyle(self, props: Mapping[str, str]) -> dict[str, dict[str, str]]:
out = {
Reported by Pylint.
Line: 175
Column: 3
"number_format": self.build_number_format(props),
}
# TODO: handle cell width and height: needs support in pandas.io.excel
def remove_none(d: dict[str, str]) -> None:
"""Remove key where value is None, through nested dicts"""
for k, v in list(d.items()):
if v is None:
Reported by Pylint.
Line: 191
Column: 3
return out
def build_alignment(self, props: Mapping[str, str]) -> dict[str, bool | str | None]:
# TODO: text-indent, padding-left -> alignment.indent
return {
"horizontal": props.get("text-align"),
"vertical": self._get_vertical_alignment(props),
"wrap_text": self._get_is_wrap_text(props),
}
Reported by Pylint.
Line: 282
Column: 3
return float(pt_string.rstrip("pt"))
def build_fill(self, props: Mapping[str, str]):
# TODO: perhaps allow for special properties
# -excel-pattern-bgcolor and -excel-pattern-type
fill_color = props.get("background-color")
if fill_color not in (None, "transparent", "none"):
return {"fgColor": self.color_to_excel(fill_color), "patternType": "solid"}
Reported by Pylint.
Line: 307
Column: 3
"color": self.color_to_excel(props.get("color")),
# shadow if nonzero digit before shadow color
"shadow": self._get_shadow(props),
# FIXME: dont leave commented-out
# 'vertAlign':,
# 'charset': ,
# 'scheme': ,
# 'outline': ,
# 'condense': ,
Reported by Pylint.
Line: 719
Column: 36
values = levels.take(
level_codes,
allow_fill=levels._can_hold_na,
fill_value=levels._na_value,
)
for i, span_val in spans.items():
spans_multiple_cells = span_val > 1
Reported by Pylint.
Line: 720
Column: 36
values = levels.take(
level_codes,
allow_fill=levels._can_hold_na,
fill_value=levels._na_value,
)
for i, span_val in spans.items():
spans_multiple_cells = span_val > 1
yield ExcelCell(
Reported by Pylint.
pandas/_config/config.py
54 issues
Line: 413
Column: 9
self.ops = list(zip(args[::2], args[1::2]))
def __enter__(self):
self.undo = [(pat, _get_option(pat, silent=True)) for pat, val in self.ops]
for pat, val in self.ops:
_set_option(pat, val, silent=True)
def __exit__(self, *args):
Reported by Pylint.
Line: 735
Column: 5
# Note: reset_option relies on set_option, and on key directly
# it does not fit in to this monkey-patching scheme
global register_option, get_option, set_option, reset_option
def wrap(func: F) -> F:
def inner(key: str, *args, **kwds):
pkey = f"{prefix}.{key}"
return func(pkey, *args, **kwds)
Reported by Pylint.
Line: 135
Column: 12
kwarg = list(kwargs.keys())[0]
raise TypeError(f'_set_option() got an unexpected keyword argument "{kwarg}"')
for k, v in zip(args[::2], args[1::2]):
key = _get_single_key(k, silent)
o = _get_registered_option(key)
if o and o.validator:
o.validator(v)
Reported by Pylint.
Line: 138
Column: 9
for k, v in zip(args[::2], args[1::2]):
key = _get_single_key(k, silent)
o = _get_registered_option(key)
if o and o.validator:
o.validator(v)
# walk the nested dict
root, k = _get_root(key)
Reported by Pylint.
Line: 154
Column: 1
o.cb(key)
def _describe_option(pat: str = "", _print_desc: bool = True):
keys = _select_options(pat)
if len(keys) == 0:
raise OptionError("No such keys(s)")
Reported by Pylint.
Line: 160
Column: 5
if len(keys) == 0:
raise OptionError("No such keys(s)")
s = "\n".join([_build_option_description(k) for k in keys])
if _print_desc:
print(s)
else:
return s
Reported by Pylint.
Line: 186
Column: 1
_set_option(k, _registered_options[k].defval, silent=silent)
def get_default_val(pat: str):
key = _get_single_key(pat, silent=True)
return _get_registered_option(key).defval
class DictWrapper:
Reported by Pylint.
Line: 216
Column: 13
prefix += "."
prefix += key
try:
v = object.__getattribute__(self, "d")[key]
except KeyError as err:
raise OptionError("No such option") from err
if isinstance(v, dict):
return DictWrapper(v, prefix)
else:
Reported by Pylint.
Line: 219
Column: 9
v = object.__getattribute__(self, "d")[key]
except KeyError as err:
raise OptionError("No such option") from err
if isinstance(v, dict):
return DictWrapper(v, prefix)
else:
return _get_option(prefix)
def __dir__(self) -> Iterable[str]:
Reported by Pylint.
Line: 237
Column: 1
# of options, and option descriptions.
class CallableDynamicDoc:
def __init__(self, func, doc_tmpl):
self.__doc_tmpl__ = doc_tmpl
self.__func__ = func
def __call__(self, *args, **kwds):
Reported by Pylint.
pandas/core/window/ewm.py
53 issues
Line: 12
Column: 1
import numpy as np
from pandas._libs.tslibs import Timedelta
import pandas._libs.window.aggregations as window_aggregations
from pandas._typing import (
Axis,
FrameOrSeries,
TimedeltaConvertibleTypes,
)
Reported by Pylint.
Line: 12
Column: 1
import numpy as np
from pandas._libs.tslibs import Timedelta
import pandas._libs.window.aggregations as window_aggregations
from pandas._typing import (
Axis,
FrameOrSeries,
TimedeltaConvertibleTypes,
)
Reported by Pylint.
Line: 855
Column: 28
1 0.75 5.75
"""
result_kwargs = {}
is_frame = True if self._selected_obj.ndim == 2 else False
if update_times is not None:
raise NotImplementedError("update_times is not implemented.")
else:
update_deltas = np.ones(
max(self._selected_obj.shape[self.axis - 1] - 1, 0), dtype=np.float64
Reported by Pylint.
Line: 860
Column: 21
raise NotImplementedError("update_times is not implemented.")
else:
update_deltas = np.ones(
max(self._selected_obj.shape[self.axis - 1] - 1, 0), dtype=np.float64
)
if update is not None:
if self._mean.last_ewm is None:
raise ValueError(
"Must call mean with update=None first before passing update"
Reported by Pylint.
Line: 878
Column: 38
np_array = np.concatenate((last_value, update.to_numpy()))
else:
result_from = 0
result_kwargs["index"] = self._selected_obj.index
if is_frame:
result_kwargs["columns"] = self._selected_obj.columns
else:
result_kwargs["name"] = self._selected_obj.name
np_array = self._selected_obj.astype(np.float64).to_numpy()
Reported by Pylint.
Line: 880
Column: 44
result_from = 0
result_kwargs["index"] = self._selected_obj.index
if is_frame:
result_kwargs["columns"] = self._selected_obj.columns
else:
result_kwargs["name"] = self._selected_obj.name
np_array = self._selected_obj.astype(np.float64).to_numpy()
ewma_func = generate_online_numba_ewma_func(self.engine_kwargs)
result = self._mean.run_ewm(
Reported by Pylint.
Line: 882
Column: 41
if is_frame:
result_kwargs["columns"] = self._selected_obj.columns
else:
result_kwargs["name"] = self._selected_obj.name
np_array = self._selected_obj.astype(np.float64).to_numpy()
ewma_func = generate_online_numba_ewma_func(self.engine_kwargs)
result = self._mean.run_ewm(
np_array if is_frame else np_array[:, np.newaxis],
update_deltas,
Reported by Pylint.
Line: 883
Column: 24
result_kwargs["columns"] = self._selected_obj.columns
else:
result_kwargs["name"] = self._selected_obj.name
np_array = self._selected_obj.astype(np.float64).to_numpy()
ewma_func = generate_online_numba_ewma_func(self.engine_kwargs)
result = self._mean.run_ewm(
np_array if is_frame else np_array[:, np.newaxis],
update_deltas,
self.min_periods,
Reported by Pylint.
Line: 894
Column: 18
if not is_frame:
result = result.squeeze()
result = result[result_from:]
result = self._selected_obj._constructor(result, **result_kwargs)
return result
Reported by Pylint.
Line: 508
Column: 5
window_method="ewm",
aggregation_description="(exponential weighted moment) standard deviation",
agg_method="std",
)
def std(self, bias: bool = False, *args, **kwargs):
nv.validate_window_func("std", args, kwargs)
return zsqrt(self.var(bias=bias, **kwargs))
def vol(self, bias: bool = False, *args, **kwargs):
Reported by Pylint.
asv_bench/benchmarks/io/hdf.py
53 issues
Line: 3
Column: 1
import numpy as np
from pandas import (
DataFrame,
HDFStore,
date_range,
read_hdf,
)
Reported by Pylint.
Line: 10
Column: 1
read_hdf,
)
from ..pandas_vb_common import (
BaseIO,
tm,
)
Reported by Pylint.
Line: 138
Column: 1
self.df.to_hdf(self.fname, "df", format=format)
from ..pandas_vb_common import setup # noqa: F401 isort:skip
Reported by Pylint.
Line: 20
Column: 9
def setup(self):
N = 25000
index = tm.makeStringIndex(N)
self.df = DataFrame(
{"float1": np.random.randn(N), "float2": np.random.randn(N)}, index=index
)
self.df_mixed = DataFrame(
{
"float1": np.random.randn(N),
Reported by Pylint.
Line: 23
Column: 9
self.df = DataFrame(
{"float1": np.random.randn(N), "float2": np.random.randn(N)}, index=index
)
self.df_mixed = DataFrame(
{
"float1": np.random.randn(N),
"float2": np.random.randn(N),
"string1": ["foo"] * N,
"bool1": [True] * N,
Reported by Pylint.
Line: 33
Column: 9
},
index=index,
)
self.df_wide = DataFrame(np.random.randn(N, 100))
self.start_wide = self.df_wide.index[10000]
self.stop_wide = self.df_wide.index[15000]
self.df2 = DataFrame(
{"float1": np.random.randn(N), "float2": np.random.randn(N)},
index=date_range("1/1/2000", periods=N),
Reported by Pylint.
Line: 34
Column: 9
index=index,
)
self.df_wide = DataFrame(np.random.randn(N, 100))
self.start_wide = self.df_wide.index[10000]
self.stop_wide = self.df_wide.index[15000]
self.df2 = DataFrame(
{"float1": np.random.randn(N), "float2": np.random.randn(N)},
index=date_range("1/1/2000", periods=N),
)
Reported by Pylint.
Line: 35
Column: 9
)
self.df_wide = DataFrame(np.random.randn(N, 100))
self.start_wide = self.df_wide.index[10000]
self.stop_wide = self.df_wide.index[15000]
self.df2 = DataFrame(
{"float1": np.random.randn(N), "float2": np.random.randn(N)},
index=date_range("1/1/2000", periods=N),
)
self.start = self.df2.index[10000]
Reported by Pylint.
Line: 36
Column: 9
self.df_wide = DataFrame(np.random.randn(N, 100))
self.start_wide = self.df_wide.index[10000]
self.stop_wide = self.df_wide.index[15000]
self.df2 = DataFrame(
{"float1": np.random.randn(N), "float2": np.random.randn(N)},
index=date_range("1/1/2000", periods=N),
)
self.start = self.df2.index[10000]
self.stop = self.df2.index[15000]
Reported by Pylint.
Line: 40
Column: 9
{"float1": np.random.randn(N), "float2": np.random.randn(N)},
index=date_range("1/1/2000", periods=N),
)
self.start = self.df2.index[10000]
self.stop = self.df2.index[15000]
self.df_wide2 = DataFrame(
np.random.randn(N, 100), index=date_range("1/1/2000", periods=N)
)
self.df_dc = DataFrame(
Reported by Pylint.
pandas/tests/dtypes/cast/test_infer_dtype.py
53 issues
Line: 8
Column: 1
)
import numpy as np
import pytest
from pandas.core.dtypes.cast import (
infer_dtype_from,
infer_dtype_from_array,
infer_dtype_from_scalar,
Reported by Pylint.
Line: 37
Column: 12
# Test that infer_dtype_from_scalar is
# returning correct dtype for int and float.
data = np.dtype(any_int_numpy_dtype).type(12)
dtype, val = infer_dtype_from_scalar(data)
assert dtype == type(data)
def test_infer_dtype_from_float_scalar(float_numpy_dtype):
float_numpy_dtype = np.dtype(float_numpy_dtype).type
Reported by Pylint.
Line: 45
Column: 12
float_numpy_dtype = np.dtype(float_numpy_dtype).type
data = float_numpy_dtype(12)
dtype, val = infer_dtype_from_scalar(data)
assert dtype == float_numpy_dtype
@pytest.mark.parametrize(
"data,exp_dtype", [(12, np.int64), (np.float_(12), np.float64)]
Reported by Pylint.
Line: 53
Column: 12
"data,exp_dtype", [(12, np.int64), (np.float_(12), np.float64)]
)
def test_infer_dtype_from_python_scalar(data, exp_dtype):
dtype, val = infer_dtype_from_scalar(data)
assert dtype == exp_dtype
@pytest.mark.parametrize("bool_val", [True, False])
def test_infer_dtype_from_boolean(bool_val):
Reported by Pylint.
Line: 59
Column: 12
@pytest.mark.parametrize("bool_val", [True, False])
def test_infer_dtype_from_boolean(bool_val):
dtype, val = infer_dtype_from_scalar(bool_val)
assert dtype == np.bool_
def test_infer_dtype_from_complex(complex_dtype):
data = np.dtype(complex_dtype).type(1)
Reported by Pylint.
Line: 65
Column: 12
def test_infer_dtype_from_complex(complex_dtype):
data = np.dtype(complex_dtype).type(1)
dtype, val = infer_dtype_from_scalar(data)
assert dtype == np.complex_
@pytest.mark.parametrize(
"data", [np.datetime64(1, "ns"), Timestamp(1), datetime(2000, 1, 1, 0, 0)]
Reported by Pylint.
Line: 73
Column: 12
"data", [np.datetime64(1, "ns"), Timestamp(1), datetime(2000, 1, 1, 0, 0)]
)
def test_infer_dtype_from_datetime(data):
dtype, val = infer_dtype_from_scalar(data)
assert dtype == "M8[ns]"
@pytest.mark.parametrize("data", [np.timedelta64(1, "ns"), Timedelta(1), timedelta(1)])
def test_infer_dtype_from_timedelta(data):
Reported by Pylint.
Line: 79
Column: 12
@pytest.mark.parametrize("data", [np.timedelta64(1, "ns"), Timedelta(1), timedelta(1)])
def test_infer_dtype_from_timedelta(data):
dtype, val = infer_dtype_from_scalar(data)
assert dtype == "m8[ns]"
@pytest.mark.parametrize("freq", ["M", "D"])
def test_infer_dtype_from_period(freq, pandas_dtype):
Reported by Pylint.
Line: 84
Column: 40
@pytest.mark.parametrize("freq", ["M", "D"])
def test_infer_dtype_from_period(freq, pandas_dtype):
p = Period("2011-01-01", freq=freq)
dtype, val = infer_dtype_from_scalar(p, pandas_dtype=pandas_dtype)
if pandas_dtype:
exp_dtype = f"period[{freq}]"
Reported by Pylint.
Line: 101
Column: 12
"data", [date(2000, 1, 1), "foo", Timestamp(1, tz="US/Eastern")]
)
def test_infer_dtype_misc(data):
dtype, val = infer_dtype_from_scalar(data)
assert dtype == np.object_
@pytest.mark.parametrize("tz", ["UTC", "US/Eastern", "Asia/Tokyo"])
def test_infer_from_scalar_tz(tz, pandas_dtype):
Reported by Pylint.
pandas/tests/strings/test_case_justify.py
53 issues
Line: 5
Column: 1
import operator
import numpy as np
import pytest
from pandas import (
Series,
_testing as tm,
)
Reported by Pylint.
Line: 1
Column: 1
from datetime import datetime
import operator
import numpy as np
import pytest
from pandas import (
Series,
_testing as tm,
Reported by Pylint.
Line: 13
Column: 1
)
def test_title(any_string_dtype):
s = Series(["FOO", "BAR", np.nan, "Blah", "blurg"], dtype=any_string_dtype)
result = s.str.title()
expected = Series(["Foo", "Bar", np.nan, "Blah", "Blurg"], dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
Reported by Pylint.
Line: 14
Column: 5
def test_title(any_string_dtype):
s = Series(["FOO", "BAR", np.nan, "Blah", "blurg"], dtype=any_string_dtype)
result = s.str.title()
expected = Series(["Foo", "Bar", np.nan, "Blah", "Blurg"], dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
Reported by Pylint.
Line: 20
Column: 1
tm.assert_series_equal(result, expected)
def test_title_mixed_object():
s = Series(["FOO", np.nan, "bar", True, datetime.today(), "blah", None, 1, 2.0])
result = s.str.title()
expected = Series(
["Foo", np.nan, "Bar", np.nan, np.nan, "Blah", np.nan, np.nan, np.nan]
)
Reported by Pylint.
Line: 21
Column: 5
def test_title_mixed_object():
s = Series(["FOO", np.nan, "bar", True, datetime.today(), "blah", None, 1, 2.0])
result = s.str.title()
expected = Series(
["Foo", np.nan, "Bar", np.nan, np.nan, "Blah", np.nan, np.nan, np.nan]
)
tm.assert_almost_equal(result, expected)
Reported by Pylint.
Line: 29
Column: 1
tm.assert_almost_equal(result, expected)
def test_lower_upper(any_string_dtype):
s = Series(["om", np.nan, "nom", "nom"], dtype=any_string_dtype)
result = s.str.upper()
expected = Series(["OM", np.nan, "NOM", "NOM"], dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
Reported by Pylint.
Line: 30
Column: 5
def test_lower_upper(any_string_dtype):
s = Series(["om", np.nan, "nom", "nom"], dtype=any_string_dtype)
result = s.str.upper()
expected = Series(["OM", np.nan, "NOM", "NOM"], dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
Reported by Pylint.
Line: 40
Column: 1
tm.assert_series_equal(result, s)
def test_lower_upper_mixed_object():
s = Series(["a", np.nan, "b", True, datetime.today(), "foo", None, 1, 2.0])
result = s.str.upper()
expected = Series(["A", np.nan, "B", np.nan, np.nan, "FOO", np.nan, np.nan, np.nan])
tm.assert_series_equal(result, expected)
Reported by Pylint.
Line: 41
Column: 5
def test_lower_upper_mixed_object():
s = Series(["a", np.nan, "b", True, datetime.today(), "foo", None, 1, 2.0])
result = s.str.upper()
expected = Series(["A", np.nan, "B", np.nan, np.nan, "FOO", np.nan, np.nan, np.nan])
tm.assert_series_equal(result, expected)
Reported by Pylint.
pandas/tests/arrays/boolean/test_logical.py
53 issues
Line: 4
Column: 1
import operator
import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
from pandas.arrays import BooleanArray
from pandas.tests.extension.base import BaseOpsUtil
Reported by Pylint.
Line: 41
Column: 3
result = getattr(a, op_name)(False)
tm.assert_extension_array_equal(a, result)
# FIXME: dont leave commented-out
# TODO: pd.NA
# result = getattr(a, op_name)(pd.NA)
# tm.assert_extension_array_equal(a, result)
def test_logical_length_mismatch_raises(self, all_logical_operators):
Reported by Pylint.
Line: 42
Column: 3
tm.assert_extension_array_equal(a, result)
# FIXME: dont leave commented-out
# TODO: pd.NA
# result = getattr(a, op_name)(pd.NA)
# tm.assert_extension_array_equal(a, result)
def test_logical_length_mismatch_raises(self, all_logical_operators):
op_name = all_logical_operators
Reported by Pylint.
Line: 106
Column: 3
],
)
def test_kleene_or_scalar(self, other, expected):
# TODO: test True & False
a = pd.array([True, False, None], dtype="boolean")
result = a | other
expected = pd.array(expected, dtype="boolean")
tm.assert_extension_array_equal(result, expected)
Reported by Pylint.
Line: 224
Column: 25
tm.assert_extension_array_equal(result, expected)
if isinstance(other, BooleanArray):
other._data[other._mask] = True
a._data[a._mask] = False
result = getattr(a, all_logical_operators)(other)
expected = getattr(b, all_logical_operators)(other)
tm.assert_extension_array_equal(result, expected)
Reported by Pylint.
Line: 224
Column: 13
tm.assert_extension_array_equal(result, expected)
if isinstance(other, BooleanArray):
other._data[other._mask] = True
a._data[a._mask] = False
result = getattr(a, all_logical_operators)(other)
expected = getattr(b, all_logical_operators)(other)
tm.assert_extension_array_equal(result, expected)
Reported by Pylint.
Line: 225
Column: 21
if isinstance(other, BooleanArray):
other._data[other._mask] = True
a._data[a._mask] = False
result = getattr(a, all_logical_operators)(other)
expected = getattr(b, all_logical_operators)(other)
tm.assert_extension_array_equal(result, expected)
Reported by Pylint.
Line: 225
Column: 13
if isinstance(other, BooleanArray):
other._data[other._mask] = True
a._data[a._mask] = False
result = getattr(a, all_logical_operators)(other)
expected = getattr(b, all_logical_operators)(other)
tm.assert_extension_array_equal(result, expected)
Reported by Pylint.
Line: 1
Column: 1
import operator
import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
from pandas.arrays import BooleanArray
from pandas.tests.extension.base import BaseOpsUtil
Reported by Pylint.
Line: 12
Column: 1
from pandas.tests.extension.base import BaseOpsUtil
class TestLogicalOps(BaseOpsUtil):
def test_numpy_scalars_ok(self, all_logical_operators):
a = pd.array([True, False, None], dtype="boolean")
op = getattr(a, all_logical_operators)
tm.assert_extension_array_equal(op(True), op(np.bool_(True)))
Reported by Pylint.
pandas/tests/arrays/boolean/test_construction.py
53 issues
Line: 2
Column: 1
import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
from pandas.arrays import BooleanArray
from pandas.core.arrays.boolean import coerce_to_array
Reported by Pylint.
Line: 42
Column: 12
mask = np.array([False, False, False, True], dtype="bool")
result = BooleanArray(values, mask)
assert result._data is values
assert result._mask is mask
result = BooleanArray(values, mask, copy=True)
assert result._data is not values
assert result._mask is not mask
Reported by Pylint.
Line: 43
Column: 12
result = BooleanArray(values, mask)
assert result._data is values
assert result._mask is mask
result = BooleanArray(values, mask, copy=True)
assert result._data is not values
assert result._mask is not mask
Reported by Pylint.
Line: 46
Column: 12
assert result._mask is mask
result = BooleanArray(values, mask, copy=True)
assert result._data is not values
assert result._mask is not mask
def test_to_boolean_array():
expected = BooleanArray(
Reported by Pylint.
Line: 47
Column: 12
result = BooleanArray(values, mask, copy=True)
assert result._data is not values
assert result._mask is not mask
def test_to_boolean_array():
expected = BooleanArray(
np.array([True, False, True]), np.array([False, False, False])
Reported by Pylint.
Line: 155
Column: 3
def test_coerce_to_array():
# TODO this is currently not public API
values = np.array([True, False, True, False], dtype="bool")
mask = np.array([False, False, False, True], dtype="bool")
result = BooleanArray(*coerce_to_array(values, mask=mask))
expected = BooleanArray(values, mask)
tm.assert_extension_array_equal(result, expected)
Reported by Pylint.
Line: 161
Column: 12
result = BooleanArray(*coerce_to_array(values, mask=mask))
expected = BooleanArray(values, mask)
tm.assert_extension_array_equal(result, expected)
assert result._data is values
assert result._mask is mask
result = BooleanArray(*coerce_to_array(values, mask=mask, copy=True))
expected = BooleanArray(values, mask)
tm.assert_extension_array_equal(result, expected)
assert result._data is not values
Reported by Pylint.
Line: 162
Column: 12
expected = BooleanArray(values, mask)
tm.assert_extension_array_equal(result, expected)
assert result._data is values
assert result._mask is mask
result = BooleanArray(*coerce_to_array(values, mask=mask, copy=True))
expected = BooleanArray(values, mask)
tm.assert_extension_array_equal(result, expected)
assert result._data is not values
assert result._mask is not mask
Reported by Pylint.
Line: 166
Column: 12
result = BooleanArray(*coerce_to_array(values, mask=mask, copy=True))
expected = BooleanArray(values, mask)
tm.assert_extension_array_equal(result, expected)
assert result._data is not values
assert result._mask is not mask
# mixed missing from values and mask
values = [True, False, None, False]
mask = np.array([False, False, False, True], dtype="bool")
Reported by Pylint.
Line: 167
Column: 12
expected = BooleanArray(values, mask)
tm.assert_extension_array_equal(result, expected)
assert result._data is not values
assert result._mask is not mask
# mixed missing from values and mask
values = [True, False, None, False]
mask = np.array([False, False, False, True], dtype="bool")
result = BooleanArray(*coerce_to_array(values, mask=mask))
Reported by Pylint.
pandas/tests/series/methods/test_rank.py
53 issues
Line: 7
Column: 1
)
import numpy as np
import pytest
from pandas._libs.algos import (
Infinity,
NegInfinity,
)
Reported by Pylint.
Line: 9
Column: 1
import numpy as np
import pytest
from pandas._libs.algos import (
Infinity,
NegInfinity,
)
import pandas.util._test_decorators as td
Reported by Pylint.
Line: 9
Column: 1
import numpy as np
import pytest
from pandas._libs.algos import (
Infinity,
NegInfinity,
)
import pandas.util._test_decorators as td
Reported by Pylint.
Line: 1
Column: 1
from itertools import (
chain,
product,
)
import numpy as np
import pytest
from pandas._libs.algos import (
Reported by Pylint.
Line: 25
Column: 1
from pandas.api.types import CategoricalDtype
class TestSeriesRank:
s = Series([1, 3, 4, 2, np.nan, 2, 1, 5, np.nan, 3])
results = {
"average": np.array([1.5, 5.5, 7.0, 3.5, np.nan, 3.5, 1.5, 8.0, np.nan, 5.5]),
"min": np.array([1, 5, 7, 3, np.nan, 3, 1, 8, np.nan, 5]),
Reported by Pylint.
Line: 36
Column: 5
"dense": np.array([1, 3, 4, 2, np.nan, 2, 1, 5, np.nan, 3]),
}
def test_rank(self, datetime_series):
pytest.importorskip("scipy.stats.special")
rankdata = pytest.importorskip("scipy.stats.rankdata")
datetime_series[::2] = np.nan
datetime_series[:10][::3] = 4.0
Reported by Pylint.
Line: 36
Column: 5
"dense": np.array([1, 3, 4, 2, np.nan, 2, 1, 5, np.nan, 3]),
}
def test_rank(self, datetime_series):
pytest.importorskip("scipy.stats.special")
rankdata = pytest.importorskip("scipy.stats.rankdata")
datetime_series[::2] = np.nan
datetime_series[:10][::3] = 4.0
Reported by Pylint.
Line: 36
Column: 5
"dense": np.array([1, 3, 4, 2, np.nan, 2, 1, 5, np.nan, 3]),
}
def test_rank(self, datetime_series):
pytest.importorskip("scipy.stats.special")
rankdata = pytest.importorskip("scipy.stats.rankdata")
datetime_series[::2] = np.nan
datetime_series[:10][::3] = 4.0
Reported by Pylint.
Line: 124
Column: 5
iranks = iseries.rank()
tm.assert_series_equal(iranks, exp)
def test_rank_categorical(self):
# GH issue #15420 rank incorrectly orders ordered categories
# Test ascending/descending ranking for ordered categoricals
exp = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
exp_desc = Series([6.0, 5.0, 4.0, 3.0, 2.0, 1.0])
Reported by Pylint.
Line: 124
Column: 5
iranks = iseries.rank()
tm.assert_series_equal(iranks, exp)
def test_rank_categorical(self):
# GH issue #15420 rank incorrectly orders ordered categories
# Test ascending/descending ranking for ordered categoricals
exp = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
exp_desc = Series([6.0, 5.0, 4.0, 3.0, 2.0, 1.0])
Reported by Pylint.
pandas/tests/scalar/timestamp/test_rendering.py
53 issues
Line: 3
Column: 1
import pprint
import pytest
import pytz # noqa # a test below uses pytz but only inside a `eval` call
from pandas import Timestamp
import pandas._testing as tm
Reported by Pylint.
Line: 4
Column: 1
import pprint
import pytest
import pytz # noqa # a test below uses pytz but only inside a `eval` call
from pandas import Timestamp
import pandas._testing as tm
Reported by Pylint.
Line: 4
Column: 1
import pprint
import pytest
import pytz # noqa # a test below uses pytz but only inside a `eval` call
from pandas import Timestamp
import pandas._testing as tm
Reported by Pylint.
Line: 31
Column: 29
assert date in repr(date_only)
assert tz_repr not in repr(date_only)
assert freq_repr not in repr(date_only)
assert date_only == eval(repr(date_only))
date_tz = Timestamp(date, tz=tz)
assert date in repr(date_tz)
assert tz_repr in repr(date_tz)
assert freq_repr not in repr(date_tz)
Reported by Pylint.
Line: 31
Suggestion:
https://bandit.readthedocs.io/en/latest/blacklists/blacklist_calls.html#b307-eval
assert date in repr(date_only)
assert tz_repr not in repr(date_only)
assert freq_repr not in repr(date_only)
assert date_only == eval(repr(date_only))
date_tz = Timestamp(date, tz=tz)
assert date in repr(date_tz)
assert tz_repr in repr(date_tz)
assert freq_repr not in repr(date_tz)
Reported by Bandit.
Line: 37
Suggestion:
https://bandit.readthedocs.io/en/latest/blacklists/blacklist_calls.html#b307-eval
assert date in repr(date_tz)
assert tz_repr in repr(date_tz)
assert freq_repr not in repr(date_tz)
assert date_tz == eval(repr(date_tz))
msg = "The 'freq' argument in Timestamp"
with tm.assert_produces_warning(FutureWarning, match=msg):
date_freq = Timestamp(date, freq=freq)
assert date in repr(date_freq)
Reported by Bandit.
Line: 37
Column: 27
assert date in repr(date_tz)
assert tz_repr in repr(date_tz)
assert freq_repr not in repr(date_tz)
assert date_tz == eval(repr(date_tz))
msg = "The 'freq' argument in Timestamp"
with tm.assert_produces_warning(FutureWarning, match=msg):
date_freq = Timestamp(date, freq=freq)
assert date in repr(date_freq)
Reported by Pylint.
Line: 48
Column: 33
with tm.assert_produces_warning(
FutureWarning, match=msg, check_stacklevel=False
):
assert date_freq == eval(repr(date_freq))
with tm.assert_produces_warning(FutureWarning, match=msg):
date_tz_freq = Timestamp(date, tz=tz, freq=freq)
assert date in repr(date_tz_freq)
assert tz_repr in repr(date_tz_freq)
Reported by Pylint.
Line: 48
Suggestion:
https://bandit.readthedocs.io/en/latest/blacklists/blacklist_calls.html#b307-eval
with tm.assert_produces_warning(
FutureWarning, match=msg, check_stacklevel=False
):
assert date_freq == eval(repr(date_freq))
with tm.assert_produces_warning(FutureWarning, match=msg):
date_tz_freq = Timestamp(date, tz=tz, freq=freq)
assert date in repr(date_tz_freq)
assert tz_repr in repr(date_tz_freq)
Reported by Bandit.
Line: 58
Suggestion:
https://bandit.readthedocs.io/en/latest/blacklists/blacklist_calls.html#b307-eval
with tm.assert_produces_warning(
FutureWarning, match=msg, check_stacklevel=False
):
assert date_tz_freq == eval(repr(date_tz_freq))
def test_repr_utcoffset(self):
# This can cause the tz field to be populated, but it's redundant to
# include this information in the date-string.
date_with_utc_offset = Timestamp("2014-03-13 00:00:00-0400", tz=None)
Reported by Bandit.