The following issues were found
pandas/tests/io/pytables/test_timezones.py
55 issues
Line: 7
Column: 1
)
import numpy as np
import pytest
from pandas._libs.tslibs.timezones import maybe_get_tz
import pandas.util._test_decorators as td
import pandas as pd
Reported by Pylint.
Line: 9
Column: 1
import numpy as np
import pytest
from pandas._libs.tslibs.timezones import maybe_get_tz
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
DataFrame,
Reported by Pylint.
Line: 9
Column: 1
import numpy as np
import pytest
from pandas._libs.tslibs.timezones import maybe_get_tz
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
DataFrame,
Reported by Pylint.
Line: 137
Column: 11
# GH#4098 example
dti = date_range("2000-1-1", periods=3, freq="H", tz=gettz("US/Eastern"))
dti = dti._with_freq(None) # freq doesn't round-trip
df = DataFrame({"A": Series(range(3), index=dti)})
with ensure_clean_store(setup_path) as store:
Reported by Pylint.
Line: 137
Column: 11
# GH#4098 example
dti = date_range("2000-1-1", periods=3, freq="H", tz=gettz("US/Eastern"))
dti = dti._with_freq(None) # freq doesn't round-trip
df = DataFrame({"A": Series(range(3), index=dti)})
with ensure_clean_store(setup_path) as store:
Reported by Pylint.
Line: 191
Column: 16
with ensure_clean_store(setup_path) as store:
store.append("frame", frame)
result = store.select_column("frame", "index")
assert rng.tz == DatetimeIndex(result.values).tz
# check utc
rng = date_range("1/1/2000", "1/30/2000", tz="UTC")
frame = DataFrame(np.random.randn(len(rng), 4), index=rng)
Reported by Pylint.
Line: 191
Column: 16
with ensure_clean_store(setup_path) as store:
store.append("frame", frame)
result = store.select_column("frame", "index")
assert rng.tz == DatetimeIndex(result.values).tz
# check utc
rng = date_range("1/1/2000", "1/30/2000", tz="UTC")
frame = DataFrame(np.random.randn(len(rng), 4), index=rng)
Reported by Pylint.
Line: 200
Column: 16
with ensure_clean_store(setup_path) as store:
store.append("frame", frame)
result = store.select_column("frame", "index")
assert rng.tz == result.dt.tz
# double check non-utc
rng = date_range("1/1/2000", "1/30/2000", tz="US/Eastern")
frame = DataFrame(np.random.randn(len(rng), 4), index=rng)
Reported by Pylint.
Line: 200
Column: 16
with ensure_clean_store(setup_path) as store:
store.append("frame", frame)
result = store.select_column("frame", "index")
assert rng.tz == result.dt.tz
# double check non-utc
rng = date_range("1/1/2000", "1/30/2000", tz="US/Eastern")
frame = DataFrame(np.random.randn(len(rng), 4), index=rng)
Reported by Pylint.
Line: 209
Column: 16
with ensure_clean_store(setup_path) as store:
store.append("frame", frame)
result = store.select_column("frame", "index")
assert rng.tz == result.dt.tz
def test_timezones_fixed_format_frame_non_empty(setup_path):
with ensure_clean_store(setup_path) as store:
Reported by Pylint.
pandas/tests/indexes/test_any_index.py
55 issues
Line: 9
Column: 1
import re
import numpy as np
import pytest
from pandas.core.dtypes.common import is_float_dtype
import pandas._testing as tm
Reported by Pylint.
Line: 54
Column: 8
def test_map_identity_mapping(index):
# GH#12766
result = index.map(lambda x: x)
if index._is_backward_compat_public_numeric_index:
if is_float_dtype(index.dtype):
expected = index.astype(np.float64)
elif index.dtype == np.uint64:
expected = index.astype(np.uint64)
else:
Reported by Pylint.
Line: 147
Column: 13
"and integer or boolean arrays are valid indices"
)
with pytest.raises(IndexError, match=msg):
index[item]
class TestRendering:
def test_str(self, index):
# test the string repr
Reported by Pylint.
Line: 16
Column: 1
import pandas._testing as tm
def test_boolean_context_compat(index):
# GH#7897
with pytest.raises(ValueError, match="The truth value of a"):
if index:
pass
Reported by Pylint.
Line: 26
Column: 1
bool(index)
def test_sort(index):
msg = "cannot sort an Index object in-place, use sort_values instead"
with pytest.raises(TypeError, match=msg):
index.sort()
Reported by Pylint.
Line: 32
Column: 1
index.sort()
def test_hash_error(index):
with pytest.raises(TypeError, match=f"unhashable type: '{type(index).__name__}'"):
hash(index)
def test_copy_dtype_deprecated(index):
Reported by Pylint.
Line: 37
Column: 1
hash(index)
def test_copy_dtype_deprecated(index):
# GH#35853
with tm.assert_produces_warning(FutureWarning):
index.copy(dtype=object)
Reported by Pylint.
Line: 43
Column: 1
index.copy(dtype=object)
def test_mutability(index):
if not len(index):
return
msg = "Index does not support mutable operations"
with pytest.raises(TypeError, match=msg):
index[0] = index[0]
Reported by Pylint.
Line: 44
Column: 8
def test_mutability(index):
if not len(index):
return
msg = "Index does not support mutable operations"
with pytest.raises(TypeError, match=msg):
index[0] = index[0]
Reported by Pylint.
Line: 51
Column: 1
index[0] = index[0]
def test_map_identity_mapping(index):
# GH#12766
result = index.map(lambda x: x)
if index._is_backward_compat_public_numeric_index:
if is_float_dtype(index.dtype):
expected = index.astype(np.float64)
Reported by Pylint.
pandas/plotting/_core.py
55 issues
Line: 1
Column: 1
from __future__ import annotations
import importlib
import types
from typing import (
TYPE_CHECKING,
Sequence,
)
Reported by Pylint.
Line: 1
Column: 1
from __future__ import annotations
import importlib
import types
from typing import (
TYPE_CHECKING,
Sequence,
)
Reported by Pylint.
Line: 33
Column: 1
from pandas import DataFrame
def hist_series(
self,
by=None,
ax=None,
grid: bool = True,
xlabelsize: int | None = None,
Reported by Pylint.
Line: 33
Column: 1
from pandas import DataFrame
def hist_series(
self,
by=None,
ax=None,
grid: bool = True,
xlabelsize: int | None = None,
Reported by Pylint.
Line: 33
Column: 1
from pandas import DataFrame
def hist_series(
self,
by=None,
ax=None,
grid: bool = True,
xlabelsize: int | None = None,
Reported by Pylint.
Line: 116
Column: 1
)
def hist_frame(
data: DataFrame,
column: IndexLabel = None,
by=None,
grid: bool = True,
xlabelsize: int | None = None,
Reported by Pylint.
Line: 116
Column: 1
)
def hist_frame(
data: DataFrame,
column: IndexLabel = None,
by=None,
grid: bool = True,
xlabelsize: int | None = None,
Reported by Pylint.
Line: 116
Column: 1
)
def hist_frame(
data: DataFrame,
column: IndexLabel = None,
by=None,
grid: bool = True,
xlabelsize: int | None = None,
Reported by Pylint.
Line: 116
Column: 1
)
def hist_frame(
data: DataFrame,
column: IndexLabel = None,
by=None,
grid: bool = True,
xlabelsize: int | None = None,
Reported by Pylint.
Line: 246
Column: 1
)
_boxplot_doc = """
Make a box plot from DataFrame columns.
Make a box-and-whisker plot from DataFrame columns, optionally grouped
by some other columns. A box plot is a method for graphically depicting
groups of numerical data through their quartiles.
Reported by Pylint.
pandas/tests/series/indexing/test_get.py
54 issues
Line: 2
Column: 1
import numpy as np
import pytest
import pandas as pd
from pandas import Series
import pandas._testing as tm
def test_get():
Reported by Pylint.
Line: 161
Column: 3
[np.random.randn(10), tm.makeDateIndex(10, name="a").tz_localize(tz="US/Eastern")],
)
def test_get2(arr):
# TODO: better name, possibly split
# GH#21260
ser = Series(arr, index=[2 * i for i in range(len(arr))])
assert ser.get(4) == ser.iloc[2]
result = ser.get([4, 6])
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
import pandas as pd
from pandas import Series
import pandas._testing as tm
def test_get():
Reported by Pylint.
Line: 9
Column: 1
import pandas._testing as tm
def test_get():
# GH 6383
s = Series(
np.array(
[
43,
Reported by Pylint.
Line: 11
Column: 5
def test_get():
# GH 6383
s = Series(
np.array(
[
43,
48,
60,
Reported by Pylint.
Line: 40
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
result = s.get(25, 0)
expected = 0
assert result == expected
s = Series(
np.array(
[
43,
Reported by Bandit.
Line: 42
Column: 5
expected = 0
assert result == expected
s = Series(
np.array(
[
43,
48,
60,
Reported by Pylint.
Line: 95
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
result = s.get(25, 0)
expected = 43
assert result == expected
# GH 7407
# with a boolean accessor
df = pd.DataFrame({"i": [0] * 3, "b": [False] * 3})
vc = df.i.value_counts()
Reported by Bandit.
Line: 99
Column: 5
# GH 7407
# with a boolean accessor
df = pd.DataFrame({"i": [0] * 3, "b": [False] * 3})
vc = df.i.value_counts()
result = vc.get(99, default="Missing")
assert result == "Missing"
vc = df.b.value_counts()
Reported by Pylint.
Line: 100
Column: 5
# GH 7407
# with a boolean accessor
df = pd.DataFrame({"i": [0] * 3, "b": [False] * 3})
vc = df.i.value_counts()
result = vc.get(99, default="Missing")
assert result == "Missing"
vc = df.b.value_counts()
result = vc.get(False, default="Missing")
Reported by Pylint.
pandas/tests/generic/test_to_xarray.py
54 issues
Line: 2
Column: 1
import numpy as np
import pytest
import pandas.util._test_decorators as td
from pandas import (
Categorical,
DataFrame,
MultiIndex,
Reported by Pylint.
Line: 39
Column: 9
if len(index) == 0:
pytest.skip("Test doesn't make sense for empty index")
from xarray import Dataset
df.index = index[:3]
df.index.name = "foo"
df.columns.name = "bar"
result = df.to_xarray()
Reported by Pylint.
Line: 60
Column: 9
tm.assert_frame_equal(result.to_dataframe(), expected)
def test_to_xarray_empty(self, df):
from xarray import Dataset
df.index.name = "foo"
result = df[0:0].to_xarray()
assert result.dims["foo"] == 0
assert isinstance(result, Dataset)
Reported by Pylint.
Line: 68
Column: 9
assert isinstance(result, Dataset)
def test_to_xarray_with_multiindex(self, df):
from xarray import Dataset
# MultiIndex
df.index = MultiIndex.from_product([["a"], range(3)], names=["one", "two"])
result = df.to_xarray()
assert result.dims["one"] == 1
Reported by Pylint.
Line: 93
Column: 9
if isinstance(index, MultiIndex):
pytest.skip("MultiIndex is tested separately")
from xarray import DataArray
ser = Series(range(len(index)), index=index, dtype="int64")
ser.index.name = "foo"
result = ser.to_xarray()
repr(result)
Reported by Pylint.
Line: 108
Column: 9
tm.assert_series_equal(result.to_series(), ser)
def test_to_xarray_empty(self):
from xarray import DataArray
ser = Series([], dtype=object)
ser.index.name = "foo"
result = ser.to_xarray()
assert len(result) == 0
Reported by Pylint.
Line: 119
Column: 9
assert isinstance(result, DataArray)
def test_to_xarray_with_multiindex(self):
from xarray import DataArray
mi = MultiIndex.from_product([["a", "b"], range(3)], names=["one", "two"])
ser = Series(range(6), dtype="int64", index=mi)
result = ser.to_xarray()
assert len(result) == 2
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
import pandas.util._test_decorators as td
from pandas import (
Categorical,
DataFrame,
MultiIndex,
Reported by Pylint.
Line: 17
Column: 1
@td.skip_if_no("xarray")
class TestDataFrameToXArray:
@pytest.fixture
def df(self):
return DataFrame(
{
"a": list("abc"),
Reported by Pylint.
Line: 19
Column: 5
@td.skip_if_no("xarray")
class TestDataFrameToXArray:
@pytest.fixture
def df(self):
return DataFrame(
{
"a": list("abc"),
"b": list(range(1, 4)),
"c": np.arange(3, 6).astype("u1"),
Reported by Pylint.
pandas/tests/arrays/sparse/test_accessor.py
54 issues
Line: 4
Column: 1
import string
import numpy as np
import pytest
import pandas.util._test_decorators as td
import pandas as pd
import pandas._testing as tm
Reported by Pylint.
Line: 36
Column: 9
@pytest.mark.parametrize("dtype", ["float64", "int64"])
@td.skip_if_no_scipy
def test_from_spmatrix(self, format, labels, dtype):
import scipy.sparse
sp_dtype = SparseDtype(dtype, np.array(0, dtype=dtype).item())
mat = scipy.sparse.eye(10, format=format, dtype=dtype)
result = pd.DataFrame.sparse.from_spmatrix(mat, index=labels, columns=labels)
Reported by Pylint.
Line: 50
Column: 9
@pytest.mark.parametrize("format", ["csc", "csr", "coo"])
@td.skip_if_no_scipy
def test_from_spmatrix_including_explicit_zero(self, format):
import scipy.sparse
mat = scipy.sparse.random(10, 2, density=0.5, format=format)
mat.data[0] = 0
result = pd.DataFrame.sparse.from_spmatrix(mat)
dtype = SparseDtype("float64", 0.0)
Reported by Pylint.
Line: 65
Column: 9
)
@td.skip_if_no_scipy
def test_from_spmatrix_columns(self, columns):
import scipy.sparse
dtype = SparseDtype("float64", 0.0)
mat = scipy.sparse.random(10, 2, density=0.5)
result = pd.DataFrame.sparse.from_spmatrix(mat, columns=columns)
Reported by Pylint.
Line: 77
Column: 9
@pytest.mark.parametrize("colnames", [("A", "B"), (1, 2), (1, pd.NA), (0.1, 0.2)])
@td.skip_if_no_scipy
def test_to_coo(self, colnames):
import scipy.sparse
df = pd.DataFrame(
{colnames[0]: [0, 1, 0], colnames[1]: [1, 0, 0]}, dtype="Sparse[int64, 0]"
)
result = df.sparse.to_coo()
Reported by Pylint.
Line: 116
Column: 9
@pytest.mark.parametrize("dense_index", [True, False])
@td.skip_if_no_scipy
def test_series_from_coo(self, dtype, dense_index):
import scipy.sparse
A = scipy.sparse.eye(3, format="coo", dtype=dtype)
result = pd.Series.sparse.from_coo(A, dense_index=dense_index)
index = pd.MultiIndex.from_tuples([(0, 0), (1, 1), (2, 2)])
expected = pd.Series(SparseArray(np.array([1, 1, 1], dtype=dtype)), index=index)
Reported by Pylint.
Line: 130
Column: 9
@td.skip_if_no_scipy
def test_series_from_coo_incorrect_format_raises(self):
# gh-26554
import scipy.sparse
m = scipy.sparse.csr_matrix(np.array([[0, 1], [0, 0]]))
with pytest.raises(
TypeError, match="Expected coo_matrix. Got csr_matrix instead."
):
Reported by Pylint.
Line: 17
Column: 3
class TestSeriesAccessor:
# TODO: collect other Series accessor tests
def test_to_dense(self):
s = pd.Series([0, 1, 0, 10], dtype="Sparse[int64]")
result = s.sparse.to_dense()
expected = pd.Series([0, 1, 0, 10])
tm.assert_series_equal(result, expected)
Reported by Pylint.
Line: 29
Column: 13
def test_accessor_raises(self):
df = pd.DataFrame({"A": [0, 1]})
with pytest.raises(AttributeError, match="sparse"):
df.sparse
@pytest.mark.parametrize("format", ["csc", "csr", "coo"])
@pytest.mark.parametrize("labels", [None, list(string.ascii_letters[:10])])
@pytest.mark.parametrize("dtype", ["float64", "int64"])
@td.skip_if_no_scipy
Reported by Pylint.
Line: 35
Column: 34
@pytest.mark.parametrize("labels", [None, list(string.ascii_letters[:10])])
@pytest.mark.parametrize("dtype", ["float64", "int64"])
@td.skip_if_no_scipy
def test_from_spmatrix(self, format, labels, dtype):
import scipy.sparse
sp_dtype = SparseDtype(dtype, np.array(0, dtype=dtype).item())
mat = scipy.sparse.eye(10, format=format, dtype=dtype)
Reported by Pylint.
pandas/tests/indexing/test_at.py
54 issues
Line: 7
Column: 1
)
import numpy as np
import pytest
from pandas import (
CategoricalDtype,
CategoricalIndex,
DataFrame,
Reported by Pylint.
Line: 76
Column: 13
msg = "Invalid call for scalar access"
with pytest.raises(ValueError, match=msg):
df.at[[1, 2]]
with pytest.raises(ValueError, match=msg):
df.at[1, ["A"]]
with pytest.raises(ValueError, match=msg):
df.at[:, "A"]
Reported by Pylint.
Line: 78
Column: 13
with pytest.raises(ValueError, match=msg):
df.at[[1, 2]]
with pytest.raises(ValueError, match=msg):
df.at[1, ["A"]]
with pytest.raises(ValueError, match=msg):
df.at[:, "A"]
with pytest.raises(ValueError, match=msg):
df.at[[1, 2]] = 1
Reported by Pylint.
Line: 80
Column: 13
with pytest.raises(ValueError, match=msg):
df.at[1, ["A"]]
with pytest.raises(ValueError, match=msg):
df.at[:, "A"]
with pytest.raises(ValueError, match=msg):
df.at[[1, 2]] = 1
with pytest.raises(ValueError, match=msg):
df.at[1, ["A"]] = 1
Reported by Pylint.
Line: 91
Column: 3
class TestAtErrors:
# TODO: De-duplicate/parametrize
# test_at_series_raises_key_error2, test_at_frame_raises_key_error2
def test_at_series_raises_key_error(self, indexer_al):
# GH#31724 .at should match .loc
Reported by Pylint.
Line: 102
Column: 13
assert result == 3
with pytest.raises(KeyError, match="a"):
indexer_al(ser)["a"]
def test_at_frame_raises_key_error(self, indexer_al):
# GH#31724 .at should match .loc
df = DataFrame({0: [1, 2, 3]}, index=[3, 2, 1])
Reported by Pylint.
Line: 113
Column: 13
assert result == 3
with pytest.raises(KeyError, match="a"):
indexer_al(df)["a", 0]
with pytest.raises(KeyError, match="a"):
indexer_al(df)[1, "a"]
def test_at_series_raises_key_error2(self, indexer_al):
Reported by Pylint.
Line: 116
Column: 13
indexer_al(df)["a", 0]
with pytest.raises(KeyError, match="a"):
indexer_al(df)[1, "a"]
def test_at_series_raises_key_error2(self, indexer_al):
# at should not fallback
# GH#7814
# GH#31724 .at should match .loc
Reported by Pylint.
Line: 127
Column: 13
assert result == 1
with pytest.raises(KeyError, match="^0$"):
indexer_al(ser)[0]
def test_at_frame_raises_key_error2(self, indexer_al):
# GH#31724 .at should match .loc
df = DataFrame({"A": [1, 2, 3]}, index=list("abc"))
result = indexer_al(df)["a", "A"]
Reported by Pylint.
Line: 136
Column: 13
assert result == 1
with pytest.raises(KeyError, match="^0$"):
indexer_al(df)["a", 0]
def test_at_getitem_mixed_index_no_fallback(self):
# GH#19860
ser = Series([1, 2, 3, 4, 5], index=["a", "b", "c", 1, 2])
with pytest.raises(KeyError, match="^0$"):
Reported by Pylint.
pandas/io/parsers/python_parser.py
54 issues
Line: 21
Column: 1
import numpy as np
import pandas._libs.lib as lib
from pandas._typing import FilePathOrBuffer
from pandas.errors import (
EmptyDataError,
ParserError,
)
Reported by Pylint.
Line: 21
Column: 1
import numpy as np
import pandas._libs.lib as lib
from pandas._typing import FilePathOrBuffer
from pandas.errors import (
EmptyDataError,
ParserError,
)
Reported by Pylint.
Line: 307
Column: 20
def get_chunk(self, size=None):
if size is None:
# error: "PythonParser" has no attribute "chunksize"
size = self.chunksize # type: ignore[attr-defined]
return self.read(rows=size)
def _convert_data(self, data):
# apply converters
def _clean_mapping(mapping):
Reported by Pylint.
Line: 672
Column: 21
line = ret[0]
break
except IndexError:
raise StopIteration
else:
while self.skipfunc(self.pos):
self.pos += 1
# assert for mypy, data is Iterator[str] or None, would error in next
assert self.data is not None
Reported by Pylint.
Line: 916
Column: 26
else:
# Case 2
(index_name, columns_, self.index_col) = self._clean_index_names(
columns, self.index_col, self.unnamed_cols
)
return index_name, orig_names, columns
Reported by Pylint.
Line: 1
Column: 1
from __future__ import annotations
from collections import (
abc,
defaultdict,
)
from copy import copy
import csv
from io import StringIO
Reported by Pylint.
Line: 1
Column: 1
from __future__ import annotations
from collections import (
abc,
defaultdict,
)
from copy import copy
import csv
from io import StringIO
Reported by Pylint.
Line: 43
Column: 1
_BOM = "\ufeff"
class PythonParser(ParserBase):
def __init__(self, f: FilePathOrBuffer | list, **kwds):
"""
Workhorse function for processing nested list into DataFrame
"""
ParserBase.__init__(self, kwds)
Reported by Pylint.
Line: 43
Column: 1
_BOM = "\ufeff"
class PythonParser(ParserBase):
def __init__(self, f: FilePathOrBuffer | list, **kwds):
"""
Workhorse function for processing nested list into DataFrame
"""
ParserBase.__init__(self, kwds)
Reported by Pylint.
Line: 44
Column: 5
class PythonParser(ParserBase):
def __init__(self, f: FilePathOrBuffer | list, **kwds):
"""
Workhorse function for processing nested list into DataFrame
"""
ParserBase.__init__(self, kwds)
Reported by Pylint.
pandas/tests/indexes/datetimes/methods/test_insert.py
54 issues
Line: 4
Column: 1
from datetime import datetime
import numpy as np
import pytest
import pytz
from pandas import (
NA,
DatetimeIndex,
Reported by Pylint.
Line: 5
Column: 1
import numpy as np
import pytest
import pytz
from pandas import (
NA,
DatetimeIndex,
Index,
Reported by Pylint.
Line: 48
Column: 31
item = Timestamp("2017-04-05").tz_localize(tz)
result = dti.insert(0, item)
assert result.freq == dti.freq
# But not when we insert an item that doesn't conform to freq
dti = DatetimeIndex([], tz=tz, freq="W-THU")
result = dti.insert(0, item)
assert result.freq is None
Reported by Pylint.
Line: 117
Column: 35
result = idx.insert(n, d)
tm.assert_index_equal(result, expected)
assert result.name == expected.name
assert result.freq == expected.freq
# reset freq to None
result = idx.insert(3, datetime(2000, 1, 2))
expected = DatetimeIndex(
["2000-01-31", "2000-02-29", "2000-03-31", "2000-01-02"],
Reported by Pylint.
Line: 172
Column: 3
assert result.tz == expected.tz
assert result.freq is None
# TODO: also changes DataFrame.__setitem__ with expansion
def test_insert_mismatched_tzawareness(self):
# see GH#7299
idx = date_range("1/1/2000", periods=3, freq="D", tz="Asia/Tokyo", name="idx")
# mismatched tz-awareness
Reported by Pylint.
Line: 193
Column: 3
)
tm.assert_index_equal(result, expected)
# TODO: also changes DataFrame.__setitem__ with expansion
def test_insert_mismatched_tz(self):
# see GH#7299
idx = date_range("1/1/2000", periods=3, freq="D", tz="Asia/Tokyo", name="idx")
# mismatched tz -> cast to object (could reasonably cast to same tz or UTC)
Reported by Pylint.
Line: 225
Column: 3
result = dti.insert(1, item)
if isinstance(item, np.ndarray):
# FIXME: without doing .item() here this segfaults
assert item.item() == 0
expected = Index([dti[0], 0] + list(dti[1:]), dtype=object, name=9)
else:
expected = Index([dti[0], item] + list(dti[1:]), dtype=object, name=9)
Reported by Pylint.
Line: 1
Column: 1
from datetime import datetime
import numpy as np
import pytest
import pytz
from pandas import (
NA,
DatetimeIndex,
Reported by Pylint.
Line: 18
Column: 1
import pandas._testing as tm
class TestInsert:
@pytest.mark.parametrize("null", [None, np.nan, np.datetime64("NaT"), NaT, NA])
@pytest.mark.parametrize("tz", [None, "UTC", "US/Eastern"])
def test_insert_nat(self, tz, null):
# GH#16537, GH#18295 (test missing)
Reported by Pylint.
Line: 21
Column: 5
class TestInsert:
@pytest.mark.parametrize("null", [None, np.nan, np.datetime64("NaT"), NaT, NA])
@pytest.mark.parametrize("tz", [None, "UTC", "US/Eastern"])
def test_insert_nat(self, tz, null):
# GH#16537, GH#18295 (test missing)
idx = DatetimeIndex(["2017-01-01"], tz=tz)
expected = DatetimeIndex(["NaT", "2017-01-01"], tz=tz)
if tz is not None and isinstance(null, np.datetime64):
Reported by Pylint.
pandas/core/arrays/timedeltas.py
54 issues
Line: 8
Column: 1
import numpy as np
from pandas._libs import (
lib,
tslibs,
)
from pandas._libs.arrays import NDArrayBacked
from pandas._libs.tslibs import (
Reported by Pylint.
Line: 12
Column: 1
lib,
tslibs,
)
from pandas._libs.arrays import NDArrayBacked
from pandas._libs.tslibs import (
BaseOffset,
NaT,
NaTType,
Period,
Reported by Pylint.
Line: 12
Column: 1
lib,
tslibs,
)
from pandas._libs.arrays import NDArrayBacked
from pandas._libs.tslibs import (
BaseOffset,
NaT,
NaTType,
Period,
Reported by Pylint.
Line: 24
Column: 1
iNaT,
to_offset,
)
from pandas._libs.tslibs.conversion import (
ensure_timedelta64ns,
precision_from_unit,
)
from pandas._libs.tslibs.fields import get_timedelta_field
from pandas._libs.tslibs.timedeltas import (
Reported by Pylint.
Line: 24
Column: 1
iNaT,
to_offset,
)
from pandas._libs.tslibs.conversion import (
ensure_timedelta64ns,
precision_from_unit,
)
from pandas._libs.tslibs.fields import get_timedelta_field
from pandas._libs.tslibs.timedeltas import (
Reported by Pylint.
Line: 28
Column: 1
ensure_timedelta64ns,
precision_from_unit,
)
from pandas._libs.tslibs.fields import get_timedelta_field
from pandas._libs.tslibs.timedeltas import (
array_to_timedelta64,
ints_to_pytimedelta,
parse_timedelta_unit,
)
Reported by Pylint.
Line: 28
Column: 1
ensure_timedelta64ns,
precision_from_unit,
)
from pandas._libs.tslibs.fields import get_timedelta_field
from pandas._libs.tslibs.timedeltas import (
array_to_timedelta64,
ints_to_pytimedelta,
parse_timedelta_unit,
)
Reported by Pylint.
Line: 29
Column: 1
precision_from_unit,
)
from pandas._libs.tslibs.fields import get_timedelta_field
from pandas._libs.tslibs.timedeltas import (
array_to_timedelta64,
ints_to_pytimedelta,
parse_timedelta_unit,
)
from pandas._typing import (
Reported by Pylint.
Line: 29
Column: 1
precision_from_unit,
)
from pandas._libs.tslibs.fields import get_timedelta_field
from pandas._libs.tslibs.timedeltas import (
array_to_timedelta64,
ints_to_pytimedelta,
parse_timedelta_unit,
)
from pandas._typing import (
Reported by Pylint.
Line: 84
Column: 12
def f(self) -> np.ndarray:
values = self.asi8
result = get_timedelta_field(values, alias)
if self._hasnans:
result = self._maybe_mask_results(
result, fill_value=None, convert="float64"
)
return result
Reported by Pylint.