The following issues were found
pandas/tests/apply/test_invalid_arg.py
46 issues
Line: 13
Column: 1
import re
import numpy as np
import pytest
from pandas import (
Categorical,
DataFrame,
Series,
Reported by Pylint.
Line: 77
Column: 14
def test_map_datetimetz_na_action():
values = date_range("2011-01-01", "2011-01-02", freq="H").tz_localize("Asia/Tokyo")
s = Series(values, name="XX")
with pytest.raises(NotImplementedError, match=tm.EMPTY_STRING_PATTERN):
s.map(lambda x: x, na_action="ignore")
Reported by Pylint.
Line: 77
Column: 14
def test_map_datetimetz_na_action():
values = date_range("2011-01-01", "2011-01-02", freq="H").tz_localize("Asia/Tokyo")
s = Series(values, name="XX")
with pytest.raises(NotImplementedError, match=tm.EMPTY_STRING_PATTERN):
s.map(lambda x: x, na_action="ignore")
Reported by Pylint.
Line: 219
Column: 5
row["D"] = 7
return row
def transform2(row):
if notna(row["C"]) and row["C"].startswith("shin") and row["A"] == "foo":
row["D"] = 7
return row
msg = "'float' object has no attribute 'startswith'"
Reported by Pylint.
Line: 1
Column: 1
# Tests specifically aimed at detecting bad arguments.
# This file is organized by reason for exception.
# 1. always invalid argument values
# 2. missing column(s)
# 3. incompatible ops/dtype/args/kwargs
# 4. invalid result shape/type
# If your test does not fit into one of these categories, add to this list.
from itertools import chain
Reported by Pylint.
Line: 27
Column: 1
@pytest.mark.parametrize("result_type", ["foo", 1])
def test_result_type_error(result_type, int_frame_const_col):
# allowed result_type
df = int_frame_const_col
msg = (
"invalid value for result_type, must be one of "
Reported by Pylint.
Line: 29
Column: 5
@pytest.mark.parametrize("result_type", ["foo", 1])
def test_result_type_error(result_type, int_frame_const_col):
# allowed result_type
df = int_frame_const_col
msg = (
"invalid value for result_type, must be one of "
"{None, 'reduce', 'broadcast', 'expand'}"
)
Reported by Pylint.
Line: 39
Column: 1
df.apply(lambda x: [1, 2, 3], axis=1, result_type=result_type)
def test_apply_invalid_axis_value():
df = DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], index=["a", "a", "c"])
msg = "No axis named 2 for object type DataFrame"
with pytest.raises(ValueError, match=msg):
df.apply(lambda x: x, 2)
Reported by Pylint.
Line: 40
Column: 5
def test_apply_invalid_axis_value():
df = DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], index=["a", "a", "c"])
msg = "No axis named 2 for object type DataFrame"
with pytest.raises(ValueError, match=msg):
df.apply(lambda x: x, 2)
Reported by Pylint.
Line: 46
Column: 1
df.apply(lambda x: x, 2)
def test_applymap_invalid_na_action(float_frame):
# GH 23803
with pytest.raises(ValueError, match="na_action must be .*Got 'abc'"):
float_frame.applymap(lambda x: len(str(x)), na_action="abc")
Reported by Pylint.
pandas/tests/api/test_api.py
46 issues
Line: 6
Column: 1
import subprocess
import sys
import pytest
import pandas as pd
from pandas import api
import pandas._testing as tm
Reported by Pylint.
Line: 287
Column: 13
sys.modules.pop("pandas.util.testing", None)
with tm.assert_produces_warning(FutureWarning) as m:
import pandas.util.testing # noqa: F401
assert "pandas.util.testing is deprecated" in str(m[0].message)
assert "pandas.testing instead" in str(m[0].message)
def test_util_testing_deprecated_direct(self):
Reported by Pylint.
Line: 296
Column: 13
# avoid cache state affecting the test
sys.modules.pop("pandas.util.testing", None)
with tm.assert_produces_warning(FutureWarning) as m:
from pandas.util.testing import assert_series_equal # noqa: F401
assert "pandas.util.testing is deprecated" in str(m[0].message)
assert "pandas.testing instead" in str(m[0].message)
def test_util_in_top_level(self):
Reported by Pylint.
Line: 314
Column: 13
assert "pandas.util.testing is deprecated" in out
with pytest.raises(AttributeError, match="foo"):
pd.util.foo
Reported by Pylint.
Line: 1
Column: 1
from __future__ import annotations
import subprocess
import sys
import pytest
import pandas as pd
from pandas import api
Reported by Pylint.
Line: 3
Suggestion:
https://bandit.readthedocs.io/en/latest/blacklists/blacklist_imports.html#b404-import-subprocess
from __future__ import annotations
import subprocess
import sys
import pytest
import pandas as pd
from pandas import api
Reported by Bandit.
Line: 13
Column: 1
import pandas._testing as tm
class Base:
def check(self, namespace, expected, ignored=None):
# see which names are in the namespace, minus optional
# ignored ones
# compare vs the expected
Reported by Pylint.
Line: 13
Column: 1
import pandas._testing as tm
class Base:
def check(self, namespace, expected, ignored=None):
# see which names are in the namespace, minus optional
# ignored ones
# compare vs the expected
Reported by Pylint.
Line: 14
Column: 5
class Base:
def check(self, namespace, expected, ignored=None):
# see which names are in the namespace, minus optional
# ignored ones
# compare vs the expected
result = sorted(f for f in dir(namespace) if not f.startswith("__"))
Reported by Pylint.
Line: 14
Column: 5
class Base:
def check(self, namespace, expected, ignored=None):
# see which names are in the namespace, minus optional
# ignored ones
# compare vs the expected
result = sorted(f for f in dir(namespace) if not f.startswith("__"))
Reported by Pylint.
pandas/tests/tools/test_to_timedelta.py
46 issues
Line: 7
Column: 1
)
import numpy as np
import pytest
from pandas.errors import OutOfBoundsTimedelta
import pandas as pd
from pandas import (
Reported by Pylint.
Line: 92
Column: 13
TimedeltaIndex(arr)
with pytest.raises(OutOfBoundsTimedelta, match=msg):
TimedeltaArray._from_sequence(arr)
def test_to_timedelta_dataframe(self):
# GH 11776
arr = np.arange(10).reshape(2, 5)
df = pd.DataFrame(np.arange(10).reshape(2, 5))
Reported by Pylint.
Line: 264
Column: 54
],
)
@pytest.mark.parametrize("func", [pd.Timedelta, to_timedelta])
def test_to_timedelta_precision_over_nanos(self, input, expected, func):
# GH: 36738
expected = pd.Timedelta(expected)
result = func(input)
assert result == expected
Reported by Pylint.
Line: 1
Column: 1
from datetime import (
time,
timedelta,
)
import numpy as np
import pytest
from pandas.errors import OutOfBoundsTimedelta
Reported by Pylint.
Line: 22
Column: 1
from pandas.core.arrays import TimedeltaArray
class TestTimedeltas:
@pytest.mark.parametrize("readonly", [True, False])
def test_to_timedelta_readonly(self, readonly):
# GH#34857
arr = np.array([], dtype=object)
if readonly:
Reported by Pylint.
Line: 24
Column: 5
class TestTimedeltas:
@pytest.mark.parametrize("readonly", [True, False])
def test_to_timedelta_readonly(self, readonly):
# GH#34857
arr = np.array([], dtype=object)
if readonly:
arr.setflags(write=False)
result = to_timedelta(arr)
Reported by Pylint.
Line: 24
Column: 5
class TestTimedeltas:
@pytest.mark.parametrize("readonly", [True, False])
def test_to_timedelta_readonly(self, readonly):
# GH#34857
arr = np.array([], dtype=object)
if readonly:
arr.setflags(write=False)
result = to_timedelta(arr)
Reported by Pylint.
Line: 33
Column: 5
expected = to_timedelta([])
tm.assert_index_equal(result, expected)
def test_to_timedelta(self):
result = to_timedelta(["", ""])
assert isna(result).all()
# pass thru
Reported by Pylint.
Line: 33
Column: 5
expected = to_timedelta([])
tm.assert_index_equal(result, expected)
def test_to_timedelta(self):
result = to_timedelta(["", ""])
assert isna(result).all()
# pass thru
Reported by Pylint.
Line: 36
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
def test_to_timedelta(self):
result = to_timedelta(["", ""])
assert isna(result).all()
# pass thru
result = to_timedelta(np.array([np.timedelta64(1, "s")]))
expected = pd.Index(np.array([np.timedelta64(1, "s")]))
tm.assert_index_equal(result, expected)
Reported by Bandit.
asv_bench/benchmarks/period.py
46 issues
Line: 5
Column: 1
Period benchmarks with non-tslibs dependencies. See
benchmarks.tslibs.period for benchmarks that rely only on tslibs.
"""
from pandas import (
DataFrame,
Period,
PeriodIndex,
Series,
date_range,
Reported by Pylint.
Line: 14
Column: 1
period_range,
)
from pandas.tseries.frequencies import to_offset
class PeriodIndexConstructor:
params = [["D"], [True, False]]
Reported by Pylint.
Line: 23
Column: 9
param_names = ["freq", "is_offset"]
def setup(self, freq, is_offset):
self.rng = date_range("1985", periods=1000)
self.rng2 = date_range("1985", periods=1000).to_pydatetime()
self.ints = list(range(2000, 3000))
self.daily_ints = (
date_range("1/1/2000", periods=1000, freq=freq).strftime("%Y%m%d").map(int)
)
Reported by Pylint.
Line: 24
Column: 9
def setup(self, freq, is_offset):
self.rng = date_range("1985", periods=1000)
self.rng2 = date_range("1985", periods=1000).to_pydatetime()
self.ints = list(range(2000, 3000))
self.daily_ints = (
date_range("1/1/2000", periods=1000, freq=freq).strftime("%Y%m%d").map(int)
)
if is_offset:
Reported by Pylint.
Line: 25
Column: 9
def setup(self, freq, is_offset):
self.rng = date_range("1985", periods=1000)
self.rng2 = date_range("1985", periods=1000).to_pydatetime()
self.ints = list(range(2000, 3000))
self.daily_ints = (
date_range("1/1/2000", periods=1000, freq=freq).strftime("%Y%m%d").map(int)
)
if is_offset:
self.freq = to_offset(freq)
Reported by Pylint.
Line: 26
Column: 9
self.rng = date_range("1985", periods=1000)
self.rng2 = date_range("1985", periods=1000).to_pydatetime()
self.ints = list(range(2000, 3000))
self.daily_ints = (
date_range("1/1/2000", periods=1000, freq=freq).strftime("%Y%m%d").map(int)
)
if is_offset:
self.freq = to_offset(freq)
else:
Reported by Pylint.
Line: 30
Column: 13
date_range("1/1/2000", periods=1000, freq=freq).strftime("%Y%m%d").map(int)
)
if is_offset:
self.freq = to_offset(freq)
else:
self.freq = freq
def time_from_date_range(self, freq, is_offset):
PeriodIndex(self.rng, freq=freq)
Reported by Pylint.
Line: 32
Column: 13
if is_offset:
self.freq = to_offset(freq)
else:
self.freq = freq
def time_from_date_range(self, freq, is_offset):
PeriodIndex(self.rng, freq=freq)
def time_from_pydatetime(self, freq, is_offset):
Reported by Pylint.
Line: 34
Column: 42
else:
self.freq = freq
def time_from_date_range(self, freq, is_offset):
PeriodIndex(self.rng, freq=freq)
def time_from_pydatetime(self, freq, is_offset):
PeriodIndex(self.rng2, freq=freq)
Reported by Pylint.
Line: 37
Column: 42
def time_from_date_range(self, freq, is_offset):
PeriodIndex(self.rng, freq=freq)
def time_from_pydatetime(self, freq, is_offset):
PeriodIndex(self.rng2, freq=freq)
def time_from_ints(self, freq, is_offset):
PeriodIndex(self.ints, freq=freq)
Reported by Pylint.
asv_bench/benchmarks/index_cached_properties.py
46 issues
Line: 1
Column: 1
import pandas as pd
class IndexCache:
number = 1
repeat = (3, 100, 20)
params = [
[
Reported by Pylint.
Line: 27
Column: 13
def setup(self, index_type):
N = 10 ** 5
if index_type == "MultiIndex":
self.idx = pd.MultiIndex.from_product(
[pd.date_range("1/1/2000", freq="T", periods=N // 2), ["a", "b"]]
)
elif index_type == "DatetimeIndex":
self.idx = pd.date_range("1/1/2000", freq="T", periods=N)
elif index_type == "Int64Index":
Reported by Pylint.
Line: 31
Column: 13
[pd.date_range("1/1/2000", freq="T", periods=N // 2), ["a", "b"]]
)
elif index_type == "DatetimeIndex":
self.idx = pd.date_range("1/1/2000", freq="T", periods=N)
elif index_type == "Int64Index":
self.idx = pd.Index(range(N))
elif index_type == "PeriodIndex":
self.idx = pd.period_range("1/1/2000", freq="T", periods=N)
elif index_type == "RangeIndex":
Reported by Pylint.
Line: 33
Column: 13
elif index_type == "DatetimeIndex":
self.idx = pd.date_range("1/1/2000", freq="T", periods=N)
elif index_type == "Int64Index":
self.idx = pd.Index(range(N))
elif index_type == "PeriodIndex":
self.idx = pd.period_range("1/1/2000", freq="T", periods=N)
elif index_type == "RangeIndex":
self.idx = pd.RangeIndex(start=0, stop=N)
elif index_type == "IntervalIndex":
Reported by Pylint.
Line: 35
Column: 13
elif index_type == "Int64Index":
self.idx = pd.Index(range(N))
elif index_type == "PeriodIndex":
self.idx = pd.period_range("1/1/2000", freq="T", periods=N)
elif index_type == "RangeIndex":
self.idx = pd.RangeIndex(start=0, stop=N)
elif index_type == "IntervalIndex":
self.idx = pd.IntervalIndex.from_arrays(range(N), range(1, N + 1))
elif index_type == "TimedeltaIndex":
Reported by Pylint.
Line: 37
Column: 13
elif index_type == "PeriodIndex":
self.idx = pd.period_range("1/1/2000", freq="T", periods=N)
elif index_type == "RangeIndex":
self.idx = pd.RangeIndex(start=0, stop=N)
elif index_type == "IntervalIndex":
self.idx = pd.IntervalIndex.from_arrays(range(N), range(1, N + 1))
elif index_type == "TimedeltaIndex":
self.idx = pd.TimedeltaIndex(range(N))
elif index_type == "Float64Index":
Reported by Pylint.
Line: 39
Column: 13
elif index_type == "RangeIndex":
self.idx = pd.RangeIndex(start=0, stop=N)
elif index_type == "IntervalIndex":
self.idx = pd.IntervalIndex.from_arrays(range(N), range(1, N + 1))
elif index_type == "TimedeltaIndex":
self.idx = pd.TimedeltaIndex(range(N))
elif index_type == "Float64Index":
self.idx = pd.Float64Index(range(N))
elif index_type == "UInt64Index":
Reported by Pylint.
Line: 41
Column: 13
elif index_type == "IntervalIndex":
self.idx = pd.IntervalIndex.from_arrays(range(N), range(1, N + 1))
elif index_type == "TimedeltaIndex":
self.idx = pd.TimedeltaIndex(range(N))
elif index_type == "Float64Index":
self.idx = pd.Float64Index(range(N))
elif index_type == "UInt64Index":
self.idx = pd.UInt64Index(range(N))
elif index_type == "CategoricalIndex":
Reported by Pylint.
Line: 43
Column: 13
elif index_type == "TimedeltaIndex":
self.idx = pd.TimedeltaIndex(range(N))
elif index_type == "Float64Index":
self.idx = pd.Float64Index(range(N))
elif index_type == "UInt64Index":
self.idx = pd.UInt64Index(range(N))
elif index_type == "CategoricalIndex":
self.idx = pd.CategoricalIndex(range(N), range(N))
else:
Reported by Pylint.
Line: 45
Column: 13
elif index_type == "Float64Index":
self.idx = pd.Float64Index(range(N))
elif index_type == "UInt64Index":
self.idx = pd.UInt64Index(range(N))
elif index_type == "CategoricalIndex":
self.idx = pd.CategoricalIndex(range(N), range(N))
else:
raise ValueError
assert len(self.idx) == N
Reported by Pylint.
pandas/tests/groupby/aggregate/test_cython.py
45 issues
Line: 6
Column: 1
"""
import numpy as np
import pytest
from pandas.core.dtypes.common import is_float_dtype
import pandas as pd
from pandas import (
Reported by Pylint.
Line: 175
Column: 14
df = DataFrame(np.random.randn(1000))
labels = np.random.randint(0, 50, size=1000).astype(float)
result = df.groupby(labels)._cython_agg_general(op, alt=None, numeric_only=True)
expected = df.groupby(labels).agg(targop)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
Reported by Pylint.
Line: 197
Column: 14
# calling _cython_agg_general directly, instead of via the user API
# which sets different values for min_count, so do that here.
g = df.groupby(pd.cut(df[0], grps), observed=observed)
result = g._cython_agg_general(op, alt=None, numeric_only=True)
g = df.groupby(pd.cut(df[0], grps), observed=observed)
expected = g.agg(lambda x: targop(x))
tm.assert_frame_equal(result, expected)
Reported by Pylint.
Line: 200
Column: 22
result = g._cython_agg_general(op, alt=None, numeric_only=True)
g = df.groupby(pd.cut(df[0], grps), observed=observed)
expected = g.agg(lambda x: targop(x))
tm.assert_frame_equal(result, expected)
def test_cython_agg_empty_buckets_nanops(observed):
# GH-18869 can't call nanops on empty groups, so hardcode expected
Reported by Pylint.
Line: 210
Column: 14
df = DataFrame([11, 12, 13], columns=["a"])
grps = range(0, 25, 5)
# add / sum
result = df.groupby(pd.cut(df["a"], grps), observed=observed)._cython_agg_general(
"add", alt=None, numeric_only=True
)
intervals = pd.interval_range(0, 20, freq=5)
expected = DataFrame(
{"a": [0, 0, 36, 0]},
Reported by Pylint.
Line: 224
Column: 14
tm.assert_frame_equal(result, expected)
# prod
result = df.groupby(pd.cut(df["a"], grps), observed=observed)._cython_agg_general(
"prod", alt=None, numeric_only=True
)
expected = DataFrame(
{"a": [1, 1, 1716, 1]},
index=pd.CategoricalIndex(intervals, name="a", ordered=True),
Reported by Pylint.
Line: 286
Column: 5
"species": ["setosa", "setosa", "setosa", "setosa", "setosa"],
}
)
df._mgr.arrays[0].flags.writeable = False
result = df.groupby(["species"]).agg({"sepal_length": agg})
expected = df.copy().groupby(["species"]).agg({"sepal_length": agg})
tm.assert_equal(result, expected)
Reported by Pylint.
Line: 41
Column: 1
"prod",
"min",
"max",
],
)
def test_cythonized_aggers(op_name):
data = {
"A": [0, 0, 0, 0, 1, 1, 1, 1, 1, 1.0, np.nan, np.nan],
"B": ["A", "B"] * 6,
Reported by Pylint.
Line: 49
Column: 5
"B": ["A", "B"] * 6,
"C": np.random.randn(12),
}
df = DataFrame(data)
df.loc[2:10:2, "C"] = np.nan
op = lambda x: getattr(x, op_name)()
# single column
Reported by Pylint.
Line: 52
Column: 5
df = DataFrame(data)
df.loc[2:10:2, "C"] = np.nan
op = lambda x: getattr(x, op_name)()
# single column
grouped = df.drop(["B"], axis=1).groupby("A")
exp = {cat: op(group["C"]) for cat, group in grouped}
exp = DataFrame({"C": exp})
Reported by Pylint.
pandas/tests/libs/test_join.py
45 issues
Line: 2
Column: 1
import numpy as np
import pytest
from pandas._libs import join as libjoin
from pandas._libs.join import (
inner_join,
left_outer_join,
)
Reported by Pylint.
Line: 4
Column: 1
import numpy as np
import pytest
from pandas._libs import join as libjoin
from pandas._libs.join import (
inner_join,
left_outer_join,
)
Reported by Pylint.
Line: 5
Column: 1
import pytest
from pandas._libs import join as libjoin
from pandas._libs.join import (
inner_join,
left_outer_join,
)
import pandas._testing as tm
Reported by Pylint.
Line: 5
Column: 1
import pytest
from pandas._libs import join as libjoin
from pandas._libs.join import (
inner_join,
left_outer_join,
)
import pandas._testing as tm
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
from pandas._libs import join as libjoin
from pandas._libs.join import (
inner_join,
left_outer_join,
)
Reported by Pylint.
Line: 13
Column: 1
import pandas._testing as tm
class TestIndexer:
@pytest.mark.parametrize(
"dtype", ["int32", "int64", "float32", "float64", "object"]
)
def test_outer_join_indexer(self, dtype):
indexer = libjoin.outer_join_indexer
Reported by Pylint.
Line: 16
Column: 5
class TestIndexer:
@pytest.mark.parametrize(
"dtype", ["int32", "int64", "float32", "float64", "object"]
)
def test_outer_join_indexer(self, dtype):
indexer = libjoin.outer_join_indexer
left = np.arange(3, dtype=dtype)
right = np.arange(2, 5, dtype=dtype)
Reported by Pylint.
Line: 16
Column: 5
class TestIndexer:
@pytest.mark.parametrize(
"dtype", ["int32", "int64", "float32", "float64", "object"]
)
def test_outer_join_indexer(self, dtype):
indexer = libjoin.outer_join_indexer
left = np.arange(3, dtype=dtype)
right = np.arange(2, 5, dtype=dtype)
Reported by Pylint.
Line: 25
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
empty = np.array([], dtype=dtype)
result, lindexer, rindexer = indexer(left, right)
assert isinstance(result, np.ndarray)
assert isinstance(lindexer, np.ndarray)
assert isinstance(rindexer, np.ndarray)
tm.assert_numpy_array_equal(result, np.arange(5, dtype=dtype))
exp = np.array([0, 1, 2, -1, -1], dtype=np.intp)
tm.assert_numpy_array_equal(lindexer, exp)
Reported by Bandit.
Line: 26
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
result, lindexer, rindexer = indexer(left, right)
assert isinstance(result, np.ndarray)
assert isinstance(lindexer, np.ndarray)
assert isinstance(rindexer, np.ndarray)
tm.assert_numpy_array_equal(result, np.arange(5, dtype=dtype))
exp = np.array([0, 1, 2, -1, -1], dtype=np.intp)
tm.assert_numpy_array_equal(lindexer, exp)
exp = np.array([-1, -1, 0, 1, 2], dtype=np.intp)
Reported by Bandit.
pandas/tests/tseries/offsets/test_month.py
45 issues
Line: 10
Column: 1
"""
from datetime import datetime
import pytest
from pandas._libs.tslibs import Timestamp
from pandas._libs.tslibs.offsets import (
MonthBegin,
MonthEnd,
Reported by Pylint.
Line: 13
Column: 1
import pytest
from pandas._libs.tslibs import Timestamp
from pandas._libs.tslibs.offsets import (
MonthBegin,
MonthEnd,
SemiMonthBegin,
SemiMonthEnd,
)
Reported by Pylint.
Line: 13
Column: 1
import pytest
from pandas._libs.tslibs import Timestamp
from pandas._libs.tslibs.offsets import (
MonthBegin,
MonthEnd,
SemiMonthBegin,
SemiMonthEnd,
)
Reported by Pylint.
Line: 33
Column: 1
)
class TestSemiMonthEnd(Base):
_offset = SemiMonthEnd
offset1 = _offset()
offset2 = _offset(2)
def test_offset_whole_year(self):
Reported by Pylint.
Line: 38
Column: 5
offset1 = _offset()
offset2 = _offset(2)
def test_offset_whole_year(self):
dates = (
datetime(2007, 12, 31),
datetime(2008, 1, 15),
datetime(2008, 1, 31),
datetime(2008, 2, 15),
Reported by Pylint.
Line: 38
Column: 5
offset1 = _offset()
offset2 = _offset(2)
def test_offset_whole_year(self):
dates = (
datetime(2007, 12, 31),
datetime(2008, 1, 15),
datetime(2008, 1, 31),
datetime(2008, 2, 15),
Reported by Pylint.
Line: 211
Column: 5
)
@pytest.mark.parametrize("case", offset_cases)
def test_offset(self, case):
offset, cases = case
for base, expected in cases.items():
assert_offset_equal(offset, base, expected)
@pytest.mark.parametrize("case", offset_cases)
Reported by Pylint.
Line: 211
Column: 5
)
@pytest.mark.parametrize("case", offset_cases)
def test_offset(self, case):
offset, cases = case
for base, expected in cases.items():
assert_offset_equal(offset, base, expected)
@pytest.mark.parametrize("case", offset_cases)
Reported by Pylint.
Line: 217
Column: 5
assert_offset_equal(offset, base, expected)
@pytest.mark.parametrize("case", offset_cases)
def test_apply_index(self, case):
# https://github.com/pandas-dev/pandas/issues/34580
offset, cases = case
shift = DatetimeIndex(cases.keys())
exp = DatetimeIndex(cases.values())
Reported by Pylint.
Line: 217
Column: 5
assert_offset_equal(offset, base, expected)
@pytest.mark.parametrize("case", offset_cases)
def test_apply_index(self, case):
# https://github.com/pandas-dev/pandas/issues/34580
offset, cases = case
shift = DatetimeIndex(cases.keys())
exp = DatetimeIndex(cases.values())
Reported by Pylint.
pandas/tests/series/methods/test_cov_corr.py
45 issues
Line: 4
Column: 1
import math
import numpy as np
import pytest
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
Reported by Pylint.
Line: 61
Column: 9
class TestSeriesCorr:
@td.skip_if_no_scipy
def test_corr(self, datetime_series):
import scipy.stats as stats
# full overlap
tm.assert_almost_equal(datetime_series.corr(datetime_series), 1)
# partial overlap
Reported by Pylint.
Line: 91
Column: 9
@td.skip_if_no_scipy
def test_corr_rank(self):
import scipy.stats as stats
# kendall and spearman
A = tm.makeTimeSeries()
B = tm.makeTimeSeries()
A[-5:] = A[:5]
Reported by Pylint.
Line: 1
Column: 1
import math
import numpy as np
import pytest
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
Reported by Pylint.
Line: 16
Column: 1
import pandas._testing as tm
class TestSeriesCov:
def test_cov(self, datetime_series):
# full overlap
tm.assert_almost_equal(
datetime_series.cov(datetime_series), datetime_series.std() ** 2
)
Reported by Pylint.
Line: 17
Column: 5
class TestSeriesCov:
def test_cov(self, datetime_series):
# full overlap
tm.assert_almost_equal(
datetime_series.cov(datetime_series), datetime_series.std() ** 2
)
Reported by Pylint.
Line: 17
Column: 5
class TestSeriesCov:
def test_cov(self, datetime_series):
# full overlap
tm.assert_almost_equal(
datetime_series.cov(datetime_series), datetime_series.std() ** 2
)
Reported by Pylint.
Line: 30
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
)
# No overlap
assert np.isnan(datetime_series[::2].cov(datetime_series[1::2]))
# all NA
cp = datetime_series[:10].copy()
cp[:] = np.nan
assert isna(cp.cov(cp))
Reported by Bandit.
Line: 33
Column: 9
assert np.isnan(datetime_series[::2].cov(datetime_series[1::2]))
# all NA
cp = datetime_series[:10].copy()
cp[:] = np.nan
assert isna(cp.cov(cp))
# min_periods
assert isna(datetime_series[:15].cov(datetime_series[5:], min_periods=12))
Reported by Pylint.
Line: 35
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
# all NA
cp = datetime_series[:10].copy()
cp[:] = np.nan
assert isna(cp.cov(cp))
# min_periods
assert isna(datetime_series[:15].cov(datetime_series[5:], min_periods=12))
ts1 = datetime_series[:15].reindex(datetime_series.index)
Reported by Bandit.
pandas/tests/frame/methods/test_asof.py
45 issues
Line: 2
Column: 1
import numpy as np
import pytest
from pandas._libs.tslibs import IncompatibleFrequency
from pandas import (
DataFrame,
Period,
Series,
Reported by Pylint.
Line: 31
Column: 26
class TestFrameAsof:
def test_basic(self, date_range_frame):
df = date_range_frame
N = 50
df.loc[df.index[15:30], "A"] = np.nan
dates = date_range("1/1/1990", periods=N * 3, freq="25s")
Reported by Pylint.
Line: 51
Column: 27
rs = result[mask]
assert (rs == 14).all(1).all()
def test_subset(self, date_range_frame):
N = 10
df = date_range_frame.iloc[:N].copy()
df.loc[df.index[4:8], "A"] = np.nan
dates = date_range("1/1/1990", periods=N * 3, freq="25s")
Reported by Pylint.
Line: 74
Column: 28
tm.assert_frame_equal(result, expected)
def test_missing(self, date_range_frame):
# GH 15118
# no match found - `where` value before earliest date in index
N = 10
df = date_range_frame.iloc[:N].copy()
Reported by Pylint.
Line: 106
Column: 29
expected = frame_or_series([np.nan])
tm.assert_equal(result, expected)
def test_all_nans(self, date_range_frame):
# GH 15713
# DataFrame is all nans
# testing non-default indexes, multiple inputs
N = 150
Reported by Pylint.
Line: 161
Column: 28
result = df.asof(stamp)
tm.assert_series_equal(result, expected)
def test_is_copy(self, date_range_frame):
# GH-27357, GH-30784: ensure the result of asof is an actual copy and
# doesn't track the parent dataframe / doesn't give SettingWithCopy warnings
df = date_range_frame
N = 50
df.loc[df.index[15:30], "A"] = np.nan
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
from pandas._libs.tslibs import IncompatibleFrequency
from pandas import (
DataFrame,
Period,
Series,
Reported by Pylint.
Line: 25
Column: 5
Columns are ['A', 'B'].
"""
N = 50
rng = date_range("1/1/1990", periods=N, freq="53s")
return DataFrame({"A": np.arange(N), "B": np.arange(N)}, index=rng)
class TestFrameAsof:
Reported by Pylint.
Line: 30
Column: 1
return DataFrame({"A": np.arange(N), "B": np.arange(N)}, index=rng)
class TestFrameAsof:
def test_basic(self, date_range_frame):
df = date_range_frame
N = 50
df.loc[df.index[15:30], "A"] = np.nan
dates = date_range("1/1/1990", periods=N * 3, freq="25s")
Reported by Pylint.
Line: 31
Column: 5
class TestFrameAsof:
def test_basic(self, date_range_frame):
df = date_range_frame
N = 50
df.loc[df.index[15:30], "A"] = np.nan
dates = date_range("1/1/1990", periods=N * 3, freq="25s")
Reported by Pylint.