The following issues were found
pandas/tests/series/accessors/test_cat_accessor.py
44 issues
Line: 4
Column: 1
import warnings
import numpy as np
import pytest
from pandas import (
Categorical,
DataFrame,
Index,
Reported by Pylint.
Line: 77
Column: 13
invalid = Series([1])
with pytest.raises(AttributeError, match="only use .cat accessor"):
invalid.cat
assert not hasattr(invalid, "cat")
def test_cat_accessor_no_new_attributes(self):
# https://github.com/pandas-dev/pandas/issues/10673
cat = Series(list("aabbcde")).astype("category")
Reported by Pylint.
Line: 102
Column: 13
# invalid accessor
msg = r"Can only use \.cat accessor with a 'category' dtype"
with pytest.raises(AttributeError, match=msg):
Series([1, 2, 3]).cat
with pytest.raises(AttributeError, match=msg):
Series([1, 2, 3]).cat()
with pytest.raises(AttributeError, match=msg):
Series(["a", "b", "c"]).cat
with pytest.raises(AttributeError, match=msg):
Reported by Pylint.
Line: 106
Column: 13
with pytest.raises(AttributeError, match=msg):
Series([1, 2, 3]).cat()
with pytest.raises(AttributeError, match=msg):
Series(["a", "b", "c"]).cat
with pytest.raises(AttributeError, match=msg):
Series(np.arange(5.0)).cat
with pytest.raises(AttributeError, match=msg):
Series([Timestamp("20130101")]).cat
Reported by Pylint.
Line: 108
Column: 13
with pytest.raises(AttributeError, match=msg):
Series(["a", "b", "c"]).cat
with pytest.raises(AttributeError, match=msg):
Series(np.arange(5.0)).cat
with pytest.raises(AttributeError, match=msg):
Series([Timestamp("20130101")]).cat
# Series should delegate calls to '.categories', '.codes', '.ordered'
# and the methods '.set_categories()' 'drop_unused_categories()' to the
Reported by Pylint.
Line: 110
Column: 13
with pytest.raises(AttributeError, match=msg):
Series(np.arange(5.0)).cat
with pytest.raises(AttributeError, match=msg):
Series([Timestamp("20130101")]).cat
# Series should delegate calls to '.categories', '.codes', '.ordered'
# and the methods '.set_categories()' 'drop_unused_categories()' to the
# categorical
ser = Series(Categorical(["a", "b", "c", "a"], ordered=True))
Reported by Pylint.
Line: 180
Column: 29
# only testing field (like .day)
# and bool (is_month_start)
get_ops = lambda x: x._datetimelike_ops
test_data = [
("Datetime", get_ops(DatetimeArray), s_dr, c_dr),
("Period", get_ops(PeriodArray), s_pr, c_pr),
("Timedelta", get_ops(TimedeltaArray), s_tdr, c_tdr),
Reported by Pylint.
Line: 197
Column: 3
("floor", ("D",), {}),
("ceil", ("D",), {}),
("asfreq", ("D",), {}),
# FIXME: don't leave commented-out
# ('tz_localize', ("UTC",), {}),
]
_special_func_names = [f[0] for f in special_func_defs]
# the series is already localized
Reported by Pylint.
Line: 205
Column: 13
# the series is already localized
_ignore_names = ["tz_localize", "components"]
for name, attr_names, s, c in test_data:
func_names = [
f
for f in dir(s.dt)
if not (
f.startswith("_")
Reported by Pylint.
Line: 250
Column: 13
msg = "Can only use .dt accessor with datetimelike"
with pytest.raises(AttributeError, match=msg):
invalid.dt
assert not hasattr(invalid, "str")
Reported by Pylint.
pandas/tests/resample/test_time_grouper.py
44 issues
Line: 5
Column: 1
from operator import methodcaller
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
Series,
Reported by Pylint.
Line: 213
Column: 22
expected = normal_result.append(pad)
expected = expected.sort_index()
dti = date_range(start="2013-01-01", freq="D", periods=5, name="key")
expected.index = dti._with_freq(None) # TODO: is this desired?
tm.assert_frame_equal(expected, dt_result)
assert dt_result.index.name == "key"
def test_aggregate_with_nat_size():
Reported by Pylint.
Line: 213
Column: 22
expected = normal_result.append(pad)
expected = expected.sort_index()
dti = date_range(start="2013-01-01", freq="D", periods=5, name="key")
expected.index = dti._with_freq(None) # TODO: is this desired?
tm.assert_frame_equal(expected, dt_result)
assert dt_result.index.name == "key"
def test_aggregate_with_nat_size():
Reported by Pylint.
Line: 243
Column: 22
pad = Series([0], index=[3])
expected = normal_result.append(pad)
expected = expected.sort_index()
expected.index = date_range(
start="2013-01-01", freq="D", periods=5, name="key"
)._with_freq(None)
tm.assert_series_equal(expected, dt_result)
assert dt_result.index.name == "key"
Reported by Pylint.
Line: 243
Column: 22
pad = Series([0], index=[3])
expected = normal_result.append(pad)
expected = expected.sort_index()
expected.index = date_range(
start="2013-01-01", freq="D", periods=5, name="key"
)._with_freq(None)
tm.assert_series_equal(expected, dt_result)
assert dt_result.index.name == "key"
Reported by Pylint.
Line: 67
Column: 21
df = DataFrame({"open": 1, "close": 2}, index=ind)
tg = Grouper(freq="M")
_, grouper, _ = tg._get_grouper(df)
# Errors
grouped = df.groupby(grouper, group_keys=False)
def f(df):
Reported by Pylint.
Line: 150
Column: 5
# if TimeGrouper is used included, 'nth' doesn't work yet
"""
for func in ['nth']:
expected = getattr(normal_grouped, func)(3)
expected.index = date_range(start='2013-01-01',
freq='D', periods=5, name='key')
dt_result = getattr(dt_grouped, func)(3)
Reported by Pylint.
Line: 213
Column: 22
expected = normal_result.append(pad)
expected = expected.sort_index()
dti = date_range(start="2013-01-01", freq="D", periods=5, name="key")
expected.index = dti._with_freq(None) # TODO: is this desired?
tm.assert_frame_equal(expected, dt_result)
assert dt_result.index.name == "key"
def test_aggregate_with_nat_size():
Reported by Pylint.
Line: 213
Column: 3
expected = normal_result.append(pad)
expected = expected.sort_index()
dti = date_range(start="2013-01-01", freq="D", periods=5, name="key")
expected.index = dti._with_freq(None) # TODO: is this desired?
tm.assert_frame_equal(expected, dt_result)
assert dt_result.index.name == "key"
def test_aggregate_with_nat_size():
Reported by Pylint.
Line: 243
Column: 22
pad = Series([0], index=[3])
expected = normal_result.append(pad)
expected = expected.sort_index()
expected.index = date_range(
start="2013-01-01", freq="D", periods=5, name="key"
)._with_freq(None)
tm.assert_series_equal(expected, dt_result)
assert dt_result.index.name == "key"
Reported by Pylint.
pandas/core/computation/pytables.py
44 issues
Line: 285
Column: 5
"""return the actual filter format"""
return [self.filter]
def evaluate(self):
if not self.is_valid:
raise ValueError(f"query term is not valid [{self}]")
rhs = self.conform(self.rhs)
Reported by Pylint.
Line: 349
Column: 5
"""return the actual ne format"""
return self.condition
def evaluate(self):
if not self.is_valid:
raise ValueError(f"query term is not valid [{self}]")
# convert values if we are in the table
Reported by Pylint.
Line: 378
Column: 1
return self
class JointConditionBinOp(ConditionBinOp):
def evaluate(self):
self.condition = f"({self.lhs.condition} {self.op} {self.rhs.condition})"
return self
Reported by Pylint.
Line: 547
Column: 5
env: PyTablesScope
expr: str
def __init__(
self,
where,
queryables: dict[str, Any] | None = None,
encoding=None,
scope_level: int = 0,
Reported by Pylint.
Line: 648
Column: 5
"""loose checking if s is a pytables-acceptable expression"""
if not isinstance(s, str):
return False
ops = PyTablesExprVisitor.binary_ops + PyTablesExprVisitor.unary_ops + ("=",)
# make sure we have an op at least
return any(op in s for op in ops)
Reported by Pylint.
Line: 39
Column: 1
)
class PyTablesScope(_scope.Scope):
__slots__ = ("queryables",)
queryables: dict[str, Any]
def __init__(
Reported by Pylint.
Line: 55
Column: 1
self.queryables = queryables or {}
class Term(ops.Term):
env: PyTablesScope
def __new__(cls, name, env, side=None, encoding=None):
if isinstance(name, str):
klass = cls
Reported by Pylint.
Line: 88
Column: 1
return self._value
class Constant(Term):
def __init__(self, value, env: PyTablesScope, side=None, encoding=None):
assert isinstance(env, PyTablesScope), type(env)
super().__init__(value, env, side=side, encoding=encoding)
def _resolve_name(self):
Reported by Pylint.
Line: 90
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
class Constant(Term):
def __init__(self, value, env: PyTablesScope, side=None, encoding=None):
assert isinstance(env, PyTablesScope), type(env)
super().__init__(value, env, side=side, encoding=encoding)
def _resolve_name(self):
return self._name
Reported by Bandit.
Line: 97
Column: 1
return self._name
class BinOp(ops.BinOp):
_max_selectors = 31
op: str
queryables: dict[str, Any]
Reported by Pylint.
pandas/tests/indexes/timedeltas/test_scalar_compat.py
43 issues
Line: 6
Column: 1
"""
import numpy as np
import pytest
from pandas._libs.tslibs.offsets import INVALID_FREQ_ERR_MSG
from pandas import (
Index,
Reported by Pylint.
Line: 8
Column: 1
import numpy as np
import pytest
from pandas._libs.tslibs.offsets import INVALID_FREQ_ERR_MSG
from pandas import (
Index,
Series,
Timedelta,
Reported by Pylint.
Line: 8
Column: 1
import numpy as np
import pytest
from pandas._libs.tslibs.offsets import INVALID_FREQ_ERR_MSG
from pandas import (
Index,
Series,
Timedelta,
Reported by Pylint.
Line: 29
Column: 32
1 * 86400 + 10 * 3600 + 11 * 60 + 12 + 100123456.0 / 1e9,
1 * 86400 + 10 * 3600 + 11 * 60 + 13 + 100123456.0 / 1e9,
]
tm.assert_almost_equal(rng.total_seconds(), Index(expt))
# test Series
ser = Series(rng)
s_expt = Series(expt, index=[0, 1])
tm.assert_series_equal(ser.dt.total_seconds(), s_expt)
Reported by Pylint.
Line: 29
Column: 32
1 * 86400 + 10 * 3600 + 11 * 60 + 12 + 100123456.0 / 1e9,
1 * 86400 + 10 * 3600 + 11 * 60 + 13 + 100123456.0 / 1e9,
]
tm.assert_almost_equal(rng.total_seconds(), Index(expt))
# test Series
ser = Series(rng)
s_expt = Series(expt, index=[0, 1])
tm.assert_series_equal(ser.dt.total_seconds(), s_expt)
Reported by Pylint.
Line: 65
Column: 31
)
expected_elt = expected_rng[1]
tm.assert_index_equal(td.round(freq="H"), expected_rng)
assert elt.round(freq="H") == expected_elt
msg = INVALID_FREQ_ERR_MSG
with pytest.raises(ValueError, match=msg):
td.round(freq="foo")
Reported by Pylint.
Line: 65
Column: 31
)
expected_elt = expected_rng[1]
tm.assert_index_equal(td.round(freq="H"), expected_rng)
assert elt.round(freq="H") == expected_elt
msg = INVALID_FREQ_ERR_MSG
with pytest.raises(ValueError, match=msg):
td.round(freq="foo")
Reported by Pylint.
Line: 70
Column: 13
msg = INVALID_FREQ_ERR_MSG
with pytest.raises(ValueError, match=msg):
td.round(freq="foo")
with pytest.raises(ValueError, match=msg):
elt.round(freq="foo")
msg = "<MonthEnd> is a non-fixed frequency"
with pytest.raises(ValueError, match=msg):
Reported by Pylint.
Line: 70
Column: 13
msg = INVALID_FREQ_ERR_MSG
with pytest.raises(ValueError, match=msg):
td.round(freq="foo")
with pytest.raises(ValueError, match=msg):
elt.round(freq="foo")
msg = "<MonthEnd> is a non-fixed frequency"
with pytest.raises(ValueError, match=msg):
Reported by Pylint.
Line: 76
Column: 13
msg = "<MonthEnd> is a non-fixed frequency"
with pytest.raises(ValueError, match=msg):
td.round(freq="M")
with pytest.raises(ValueError, match=msg):
elt.round(freq="M")
@pytest.mark.parametrize(
"freq,msg",
Reported by Pylint.
pandas/tests/arrays/test_ndarray_backed.py
43 issues
Line: 25
Column: 18
# case with int8 codes
shape = (4,)
result = Categorical._empty(shape, dtype=dtype)
assert isinstance(result, Categorical)
assert result.shape == shape
assert result._ndarray.dtype == np.int8
# case where repr would segfault if we didn't override base implementation
Reported by Pylint.
Line: 28
Column: 16
result = Categorical._empty(shape, dtype=dtype)
assert isinstance(result, Categorical)
assert result.shape == shape
assert result._ndarray.dtype == np.int8
# case where repr would segfault if we didn't override base implementation
result = Categorical._empty((4096,), dtype=dtype)
assert isinstance(result, Categorical)
assert result.shape == (4096,)
Reported by Pylint.
Line: 31
Column: 18
assert result._ndarray.dtype == np.int8
# case where repr would segfault if we didn't override base implementation
result = Categorical._empty((4096,), dtype=dtype)
assert isinstance(result, Categorical)
assert result.shape == (4096,)
assert result._ndarray.dtype == np.int8
repr(result)
Reported by Pylint.
Line: 34
Column: 16
result = Categorical._empty((4096,), dtype=dtype)
assert isinstance(result, Categorical)
assert result.shape == (4096,)
assert result._ndarray.dtype == np.int8
repr(result)
# case with int16 codes
ci = CategoricalIndex(list(range(512)) * 4, ordered=False)
dtype = ci.dtype
Reported by Pylint.
Line: 40
Column: 18
# case with int16 codes
ci = CategoricalIndex(list(range(512)) * 4, ordered=False)
dtype = ci.dtype
result = Categorical._empty(shape, dtype=dtype)
assert isinstance(result, Categorical)
assert result.shape == shape
assert result._ndarray.dtype == np.int16
def test_empty_dt64tz(self):
Reported by Pylint.
Line: 43
Column: 16
result = Categorical._empty(shape, dtype=dtype)
assert isinstance(result, Categorical)
assert result.shape == shape
assert result._ndarray.dtype == np.int16
def test_empty_dt64tz(self):
dti = date_range("2016-01-01", periods=2, tz="Asia/Tokyo")
dtype = dti.dtype
Reported by Pylint.
Line: 50
Column: 18
dtype = dti.dtype
shape = (0,)
result = DatetimeArray._empty(shape, dtype=dtype)
assert result.dtype == dtype
assert isinstance(result, DatetimeArray)
assert result.shape == shape
def test_empty_dt64(self):
Reported by Pylint.
Line: 51
Column: 16
shape = (0,)
result = DatetimeArray._empty(shape, dtype=dtype)
assert result.dtype == dtype
assert isinstance(result, DatetimeArray)
assert result.shape == shape
def test_empty_dt64(self):
shape = (3, 9)
Reported by Pylint.
Line: 57
Column: 18
def test_empty_dt64(self):
shape = (3, 9)
result = DatetimeArray._empty(shape, dtype="datetime64[ns]")
assert isinstance(result, DatetimeArray)
assert result.shape == shape
def test_empty_td64(self):
shape = (3, 9)
Reported by Pylint.
Line: 63
Column: 18
def test_empty_td64(self):
shape = (3, 9)
result = TimedeltaArray._empty(shape, dtype="m8[ns]")
assert isinstance(result, TimedeltaArray)
assert result.shape == shape
def test_empty_pandas_array(self):
arr = PandasArray(np.array([1, 2]))
Reported by Pylint.
pandas/tests/indexes/period/methods/test_astype.py
43 issues
Line: 2
Column: 1
import numpy as np
import pytest
from pandas import (
CategoricalIndex,
DatetimeIndex,
Index,
Int64Index,
NaT,
Reported by Pylint.
Line: 154
Column: 28
# how keyword deprecated GH#37982
res = pi.astype("datetime64[ns]", how="start")
tm.assert_index_equal(res, exp)
assert res.freq == exp.freq
exp = DatetimeIndex(["2011-01-31", "2011-02-28", "2011-03-31"])
exp = exp + Timedelta(1, "D") - Timedelta(1, "ns")
with tm.assert_produces_warning(FutureWarning):
# how keyword deprecated GH#37982
Reported by Pylint.
Line: 167
Column: 28
exp = DatetimeIndex(["2011-01-01", "2011-02-01", "2011-03-01"], tz="US/Eastern")
res = pi.astype("datetime64[ns, US/Eastern]")
tm.assert_index_equal(res, exp)
assert res.freq == exp.freq
exp = DatetimeIndex(["2011-01-31", "2011-02-28", "2011-03-31"], tz="US/Eastern")
exp = exp + Timedelta(1, "D") - Timedelta(1, "ns")
with tm.assert_produces_warning(FutureWarning):
# how keyword deprecated GH#37982
Reported by Pylint.
Line: 69
Column: 37
exp = np.array([], dtype=object)
tm.assert_numpy_array_equal(idx.astype(object).values, exp)
tm.assert_numpy_array_equal(idx._mpl_repr(), exp)
idx = PeriodIndex(["2011-01", NaT], freq="M")
exp = np.array([Period("2011-01", freq="M"), NaT], dtype=object)
tm.assert_numpy_array_equal(idx.astype(object).values, exp)
Reported by Pylint.
Line: 75
Column: 37
exp = np.array([Period("2011-01", freq="M"), NaT], dtype=object)
tm.assert_numpy_array_equal(idx.astype(object).values, exp)
tm.assert_numpy_array_equal(idx._mpl_repr(), exp)
exp = np.array([Period("2011-01-01", freq="D"), NaT], dtype=object)
idx = PeriodIndex(["2011-01-01", NaT], freq="D")
tm.assert_numpy_array_equal(idx.astype(object).values, exp)
tm.assert_numpy_array_equal(idx._mpl_repr(), exp)
Reported by Pylint.
Line: 80
Column: 37
exp = np.array([Period("2011-01-01", freq="D"), NaT], dtype=object)
idx = PeriodIndex(["2011-01-01", NaT], freq="D")
tm.assert_numpy_array_equal(idx.astype(object).values, exp)
tm.assert_numpy_array_equal(idx._mpl_repr(), exp)
# TODO: de-duplicate this version (from test_ops) with the one above
# (from test_period)
def test_astype_object2(self):
idx = period_range(start="2013-01-01", periods=4, freq="M", name="idx")
Reported by Pylint.
Line: 82
Column: 3
tm.assert_numpy_array_equal(idx.astype(object).values, exp)
tm.assert_numpy_array_equal(idx._mpl_repr(), exp)
# TODO: de-duplicate this version (from test_ops) with the one above
# (from test_period)
def test_astype_object2(self):
idx = period_range(start="2013-01-01", periods=4, freq="M", name="idx")
expected_list = [
Period("2013-01-31", freq="M"),
Reported by Pylint.
Line: 132
Column: 18
)
tm.assert_index_equal(result, expected)
result = obj._data.astype("category")
expected = expected.values
tm.assert_categorical_equal(result, expected)
def test_astype_array_fallback(self):
obj = period_range("2000", periods=2, name="idx")
Reported by Pylint.
Line: 142
Column: 18
expected = Index(np.array([True, True]), name="idx")
tm.assert_index_equal(result, expected)
result = obj._data.astype(bool)
expected = np.array([True, True])
tm.assert_numpy_array_equal(result, expected)
def test_period_astype_to_timestamp(self):
pi = PeriodIndex(["2011-01", "2011-02", "2011-03"], freq="M")
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
from pandas import (
CategoricalIndex,
DatetimeIndex,
Index,
Int64Index,
NaT,
Reported by Pylint.
pandas/tests/generic/test_series.py
43 issues
Line: 4
Column: 1
from operator import methodcaller
import numpy as np
import pytest
import pandas as pd
from pandas import (
MultiIndex,
Series,
Reported by Pylint.
Line: 39
Column: 13
s = Series([1])
msg = "No axis named 1 for object type Series"
with pytest.raises(ValueError, match=msg):
s._set_axis_name(name="a", axis=1)
def test_get_bool_data_preserve_dtype(self):
o = Series([True, False, True])
result = o._get_bool_data()
self._compare(result, o)
Reported by Pylint.
Line: 43
Column: 18
def test_get_bool_data_preserve_dtype(self):
o = Series([True, False, True])
result = o._get_bool_data()
self._compare(result, o)
def test_nonzero_single_element(self):
# allow single item via bool method
Reported by Pylint.
Line: 123
Column: 21
result = o.T
self.check_metadata(o, result)
_metadata = Series._metadata
_finalize = Series.__finalize__
Series._metadata = ["name", "filename"]
o.filename = "foo"
o2.filename = "bar"
Reported by Pylint.
Line: 125
Column: 9
_metadata = Series._metadata
_finalize = Series.__finalize__
Series._metadata = ["name", "filename"]
o.filename = "foo"
o2.filename = "bar"
def finalize(self, other, method=None, **kwargs):
for name in self._metadata:
Reported by Pylint.
Line: 129
Column: 1
o.filename = "foo"
o2.filename = "bar"
def finalize(self, other, method=None, **kwargs):
for name in self._metadata:
if method == "concat" and name == "filename":
value = "+".join(
[getattr(o, name) for o in other.objs if getattr(o, name, None)]
)
Reported by Pylint.
Line: 148
Column: 9
assert result.name is None
# reset
Series._metadata = _metadata
Series.__finalize__ = _finalize # FIXME: use monkeypatch
Reported by Pylint.
Line: 149
Column: 3
# reset
Series._metadata = _metadata
Series.__finalize__ = _finalize # FIXME: use monkeypatch
Reported by Pylint.
Line: 1
Column: 1
from operator import methodcaller
import numpy as np
import pytest
import pandas as pd
from pandas import (
MultiIndex,
Series,
Reported by Pylint.
Line: 16
Column: 1
from pandas.tests.generic.test_generic import Generic
class TestSeries(Generic):
_typ = Series
_comparator = lambda self, x, y: tm.assert_series_equal(x, y)
@pytest.mark.parametrize("func", ["rename_axis", "_set_axis_name"])
def test_set_axis_name_mi(self, func):
Reported by Pylint.
pandas/io/xml.py
43 issues
Line: 206
Column: 9
super().__init__(*args, **kwargs)
def parse_data(self) -> list[dict[str, str | None]]:
from xml.etree.ElementTree import XML
if self.stylesheet is not None:
raise ValueError(
"To use stylesheet, you need lxml installed and selected as parser."
)
Reported by Pylint.
Line: 351
Column: 9
)
def _parse_doc(self, raw_doc) -> bytes:
from xml.etree.ElementTree import (
XMLParser,
parse,
tostring,
)
Reported by Pylint.
Line: 389
Column: 9
validate xpath, names, optionally parse and run XSLT,
and parse original or transformed XML and return specific nodes.
"""
from lxml.etree import XML
self.xml_doc = XML(self._parse_doc(self.path_or_buffer))
if self.stylesheet is not None:
self.xsl_doc = XML(self._parse_doc(self.stylesheet))
Reported by Pylint.
Line: 535
Column: 9
)
def _parse_doc(self, raw_doc) -> bytes:
from lxml.etree import (
XMLParser,
fromstring,
parse,
tostring,
)
Reported by Pylint.
Line: 569
Column: 9
am ideally flatter xml document for easier parsing and migration
to Data Frame.
"""
from lxml.etree import XSLT
transformer = XSLT(self.xsl_doc)
new_doc = transformer(self.xml_doc)
return bytes(new_doc)
Reported by Pylint.
Line: 202
Column: 5
standard library XML module: `xml.etree.ElementTree`.
"""
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
def parse_data(self) -> list[dict[str, str | None]]:
from xml.etree.ElementTree import XML
Reported by Pylint.
Line: 213
Column: 9
"To use stylesheet, you need lxml installed and selected as parser."
)
self.xml_doc = XML(self._parse_doc(self.path_or_buffer))
self._validate_path()
self._validate_names()
return self._parse_nodes()
Reported by Pylint.
Line: 329
Column: 13
raise ValueError(msg)
except (KeyError, SyntaxError):
raise SyntaxError(
"You have used an incorrect or unsupported XPath "
"expression for etree library or you used an "
"undeclared namespace prefix."
)
Reported by Pylint.
Line: 365
Suggestion:
https://bandit.readthedocs.io/en/latest/blacklists/blacklist_calls.html#b313-b320-xml-bad-elementtree
)
with preprocess_data(handle_data) as xml_data:
curr_parser = XMLParser(encoding=self.encoding)
r = parse(xml_data, parser=curr_parser)
return tostring(r.getroot())
Reported by Bandit.
Line: 366
Suggestion:
https://bandit.readthedocs.io/en/latest/blacklists/blacklist_calls.html#b313-b320-xml-bad-elementtree
with preprocess_data(handle_data) as xml_data:
curr_parser = XMLParser(encoding=self.encoding)
r = parse(xml_data, parser=curr_parser)
return tostring(r.getroot())
class _LxmlFrameParser(_XMLFrameParser):
Reported by Bandit.
pandas/tests/frame/methods/test_append.py
42 issues
Line: 2
Column: 1
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
Series,
Timestamp,
date_range,
Reported by Pylint.
Line: 168
Column: 3
{"bar": Series([Timestamp("20130101"), np.nan], dtype="M8[ns]")}
)
if using_array_manager:
# TODO(ArrayManager) decide on exact casting rules in concat
# With ArrayManager, all-NaN float is not ignored
expected = expected.astype(object)
tm.assert_frame_equal(result, expected)
df1 = DataFrame({"bar": Timestamp("20130101")}, index=range(1))
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
Series,
Timestamp,
date_range,
Reported by Pylint.
Line: 15
Column: 1
import pandas._testing as tm
class TestDataFrameAppend:
def test_append_multiindex(self, multiindex_dataframe_random_data, frame_or_series):
obj = multiindex_dataframe_random_data
if frame_or_series is Series:
obj = obj["A"]
Reported by Pylint.
Line: 16
Column: 5
class TestDataFrameAppend:
def test_append_multiindex(self, multiindex_dataframe_random_data, frame_or_series):
obj = multiindex_dataframe_random_data
if frame_or_series is Series:
obj = obj["A"]
a = obj[:5]
Reported by Pylint.
Line: 16
Column: 5
class TestDataFrameAppend:
def test_append_multiindex(self, multiindex_dataframe_random_data, frame_or_series):
obj = multiindex_dataframe_random_data
if frame_or_series is Series:
obj = obj["A"]
a = obj[:5]
Reported by Pylint.
Line: 21
Column: 9
if frame_or_series is Series:
obj = obj["A"]
a = obj[:5]
b = obj[5:]
result = a.append(b)
tm.assert_equal(result, obj)
Reported by Pylint.
Line: 22
Column: 9
obj = obj["A"]
a = obj[:5]
b = obj[5:]
result = a.append(b)
tm.assert_equal(result, obj)
def test_append_empty_list(self):
Reported by Pylint.
Line: 27
Column: 5
result = a.append(b)
tm.assert_equal(result, obj)
def test_append_empty_list(self):
# GH 28769
df = DataFrame()
result = df.append([])
expected = df
tm.assert_frame_equal(result, expected)
Reported by Pylint.
Line: 27
Column: 5
result = a.append(b)
tm.assert_equal(result, obj)
def test_append_empty_list(self):
# GH 28769
df = DataFrame()
result = df.append([])
expected = df
tm.assert_frame_equal(result, expected)
Reported by Pylint.
pandas/tests/extension/test_floating.py
42 issues
Line: 17
Column: 1
"""
import numpy as np
import pytest
from pandas.core.dtypes.common import is_extension_array_dtype
import pandas as pd
import pandas._testing as tm
Reported by Pylint.
Line: 47
Column: 10
@pytest.fixture
def data(dtype):
return pd.array(make_data(), dtype=dtype)
@pytest.fixture
def data_for_twos(dtype):
Reported by Pylint.
Line: 52
Column: 19
@pytest.fixture
def data_for_twos(dtype):
return pd.array(np.ones(100) * 2, dtype=dtype)
@pytest.fixture
def data_missing(dtype):
Reported by Pylint.
Line: 57
Column: 18
@pytest.fixture
def data_missing(dtype):
return pd.array([pd.NA, 0.1], dtype=dtype)
@pytest.fixture
def data_for_sorting(dtype):
Reported by Pylint.
Line: 62
Column: 22
@pytest.fixture
def data_for_sorting(dtype):
return pd.array([0.1, 0.2, 0.0], dtype=dtype)
@pytest.fixture
def data_missing_for_sorting(dtype):
Reported by Pylint.
Line: 67
Column: 30
@pytest.fixture
def data_missing_for_sorting(dtype):
return pd.array([0.1, pd.NA, 0.0], dtype=dtype)
@pytest.fixture
def na_cmp():
Reported by Pylint.
Line: 83
Column: 23
@pytest.fixture
def data_for_grouping(dtype):
b = 0.1
a = 0.0
c = 0.2
na = pd.NA
return pd.array([b, b, na, na, a, a, b, c], dtype=dtype)
Reported by Pylint.
Line: 93
Column: 5
class TestDtype(base.BaseDtypeTests):
@pytest.mark.skip(reason="using multiple dtypes")
def test_is_dtype_unboxes_dtype(self):
# we have multiple dtypes, so skip
pass
class TestArithmeticOps(base.BaseArithmeticOpsTests):
Reported by Pylint.
Line: 144
Column: 33
def check_opname(self, s, op_name, other, exc=None):
super().check_opname(s, op_name, other, exc=None)
def _compare_other(self, s, data, op_name, other):
self.check_opname(s, op_name, other)
class TestInterface(base.BaseInterfaceTests):
pass
Reported by Pylint.
Line: 188
Column: 48
self.assert_series_equal(result, expected)
@pytest.mark.skip(reason="uses nullable integer")
def test_value_counts_with_normalize(self, data):
pass
class TestCasting(base.BaseCastingTests):
pass
Reported by Pylint.