The following issues were found
pandas/tests/series/methods/test_cov_corr.py
45 issues
Line: 4
Column: 1
import math
import numpy as np
import pytest
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
Reported by Pylint.
Line: 61
Column: 9
class TestSeriesCorr:
@td.skip_if_no_scipy
def test_corr(self, datetime_series):
import scipy.stats as stats
# full overlap
tm.assert_almost_equal(datetime_series.corr(datetime_series), 1)
# partial overlap
Reported by Pylint.
Line: 91
Column: 9
@td.skip_if_no_scipy
def test_corr_rank(self):
import scipy.stats as stats
# kendall and spearman
A = tm.makeTimeSeries()
B = tm.makeTimeSeries()
A[-5:] = A[:5]
Reported by Pylint.
Line: 1
Column: 1
import math
import numpy as np
import pytest
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
Reported by Pylint.
Line: 16
Column: 1
import pandas._testing as tm
class TestSeriesCov:
def test_cov(self, datetime_series):
# full overlap
tm.assert_almost_equal(
datetime_series.cov(datetime_series), datetime_series.std() ** 2
)
Reported by Pylint.
Line: 17
Column: 5
class TestSeriesCov:
def test_cov(self, datetime_series):
# full overlap
tm.assert_almost_equal(
datetime_series.cov(datetime_series), datetime_series.std() ** 2
)
Reported by Pylint.
Line: 17
Column: 5
class TestSeriesCov:
def test_cov(self, datetime_series):
# full overlap
tm.assert_almost_equal(
datetime_series.cov(datetime_series), datetime_series.std() ** 2
)
Reported by Pylint.
Line: 30
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
)
# No overlap
assert np.isnan(datetime_series[::2].cov(datetime_series[1::2]))
# all NA
cp = datetime_series[:10].copy()
cp[:] = np.nan
assert isna(cp.cov(cp))
Reported by Bandit.
Line: 33
Column: 9
assert np.isnan(datetime_series[::2].cov(datetime_series[1::2]))
# all NA
cp = datetime_series[:10].copy()
cp[:] = np.nan
assert isna(cp.cov(cp))
# min_periods
assert isna(datetime_series[:15].cov(datetime_series[5:], min_periods=12))
Reported by Pylint.
Line: 35
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
# all NA
cp = datetime_series[:10].copy()
cp[:] = np.nan
assert isna(cp.cov(cp))
# min_periods
assert isna(datetime_series[:15].cov(datetime_series[5:], min_periods=12))
ts1 = datetime_series[:15].reindex(datetime_series.index)
Reported by Bandit.
pandas/tests/tseries/offsets/test_month.py
45 issues
Line: 10
Column: 1
"""
from datetime import datetime
import pytest
from pandas._libs.tslibs import Timestamp
from pandas._libs.tslibs.offsets import (
MonthBegin,
MonthEnd,
Reported by Pylint.
Line: 13
Column: 1
import pytest
from pandas._libs.tslibs import Timestamp
from pandas._libs.tslibs.offsets import (
MonthBegin,
MonthEnd,
SemiMonthBegin,
SemiMonthEnd,
)
Reported by Pylint.
Line: 13
Column: 1
import pytest
from pandas._libs.tslibs import Timestamp
from pandas._libs.tslibs.offsets import (
MonthBegin,
MonthEnd,
SemiMonthBegin,
SemiMonthEnd,
)
Reported by Pylint.
Line: 33
Column: 1
)
class TestSemiMonthEnd(Base):
_offset = SemiMonthEnd
offset1 = _offset()
offset2 = _offset(2)
def test_offset_whole_year(self):
Reported by Pylint.
Line: 38
Column: 5
offset1 = _offset()
offset2 = _offset(2)
def test_offset_whole_year(self):
dates = (
datetime(2007, 12, 31),
datetime(2008, 1, 15),
datetime(2008, 1, 31),
datetime(2008, 2, 15),
Reported by Pylint.
Line: 38
Column: 5
offset1 = _offset()
offset2 = _offset(2)
def test_offset_whole_year(self):
dates = (
datetime(2007, 12, 31),
datetime(2008, 1, 15),
datetime(2008, 1, 31),
datetime(2008, 2, 15),
Reported by Pylint.
Line: 211
Column: 5
)
@pytest.mark.parametrize("case", offset_cases)
def test_offset(self, case):
offset, cases = case
for base, expected in cases.items():
assert_offset_equal(offset, base, expected)
@pytest.mark.parametrize("case", offset_cases)
Reported by Pylint.
Line: 211
Column: 5
)
@pytest.mark.parametrize("case", offset_cases)
def test_offset(self, case):
offset, cases = case
for base, expected in cases.items():
assert_offset_equal(offset, base, expected)
@pytest.mark.parametrize("case", offset_cases)
Reported by Pylint.
Line: 217
Column: 5
assert_offset_equal(offset, base, expected)
@pytest.mark.parametrize("case", offset_cases)
def test_apply_index(self, case):
# https://github.com/pandas-dev/pandas/issues/34580
offset, cases = case
shift = DatetimeIndex(cases.keys())
exp = DatetimeIndex(cases.values())
Reported by Pylint.
Line: 217
Column: 5
assert_offset_equal(offset, base, expected)
@pytest.mark.parametrize("case", offset_cases)
def test_apply_index(self, case):
# https://github.com/pandas-dev/pandas/issues/34580
offset, cases = case
shift = DatetimeIndex(cases.keys())
exp = DatetimeIndex(cases.values())
Reported by Pylint.
pandas/core/base.py
45 issues
Line: 21
Column: 1
import numpy as np
import pandas._libs.lib as lib
from pandas._typing import (
ArrayLike,
DtypeObj,
FrameOrSeries,
IndexLabel,
Reported by Pylint.
Line: 21
Column: 1
import numpy as np
import pandas._libs.lib as lib
from pandas._typing import (
ArrayLike,
DtypeObj,
FrameOrSeries,
IndexLabel,
Reported by Pylint.
Line: 122
Column: 19
"""
memory_usage = getattr(self, "memory_usage", None)
if memory_usage:
mem = memory_usage(deep=True)
return int(mem if is_scalar(mem) else mem.sum())
# no memory_usage attribute, so fall back to object's 'sizeof'
return super().__sizeof__()
Reported by Pylint.
Line: 202
Column: 16
@final
@cache_readonly
def ndim(self) -> int:
return self._selected_obj.ndim
@final
@cache_readonly
def _obj_with_exclusions(self):
if self._selection is not None and isinstance(self.obj, ABCDataFrame):
Reported by Pylint.
Line: 1225
Column: 64
"""
@doc(_shared_docs["searchsorted"], klass="Index")
def searchsorted(self, value, side="left", sorter=None) -> npt.NDArray[np.intp]:
return algorithms.searchsorted(self._values, value, side=side, sorter=sorter)
def drop_duplicates(self, keep="first"):
duplicated = self._duplicated(keep=keep)
# error: Value of type "IndexOpsMixin" is not indexable
Reported by Pylint.
Line: 1236
Column: 10
@final
def _duplicated(
self, keep: Literal["first", "last", False] = "first"
) -> npt.NDArray[np.bool_]:
return duplicated(self._values, keep=keep)
Reported by Pylint.
Line: 531
Column: 3
)
result = np.asarray(self._values, dtype=dtype)
# TODO(GH-24345): Avoid potential double copy
if copy or na_value is not lib.no_default:
result = result.copy()
if na_value is not lib.no_default:
result[self.isna()] = na_value
return result
Reported by Pylint.
Line: 542
Column: 5
def empty(self) -> bool:
return not self.size
def max(self, axis=None, skipna: bool = True, *args, **kwargs):
"""
Return the maximum value of the Index.
Parameters
----------
Reported by Pylint.
Line: 587
Column: 5
return nanops.nanmax(self._values, skipna=skipna)
@doc(op="max", oppose="min", value="largest")
def argmax(self, axis=None, skipna: bool = True, *args, **kwargs) -> int:
"""
Return int position of the {value} value in the Series.
If the {op}imum is achieved in multiple locations,
the first row position is returned.
Reported by Pylint.
Line: 654
Column: 5
delegate, skipna=skipna
)
def min(self, axis=None, skipna: bool = True, *args, **kwargs):
"""
Return the minimum value of the Index.
Parameters
----------
Reported by Pylint.
pandas/io/formats/html.py
45 issues
Line: 16
Column: 1
from pandas._config import get_option
from pandas._libs import lib
from pandas import (
MultiIndex,
option_context,
)
Reported by Pylint.
Line: 315
Column: 3
# Column Offset Bug with to_html(index=False) with
# MultiIndex Columns and Index.
# Initially fill row with blank cells before column names.
# TODO: Refactor to remove code duplication with code
# block below for standard columns index.
row = [""] * (self.row_levels - 1)
if self.fmt.index or self.show_col_idx_names:
# see gh-22747
# If to_html(index_names=False) do not show columns
Reported by Pylint.
Line: 322
Column: 3
# see gh-22747
# If to_html(index_names=False) do not show columns
# index names.
# TODO: Refactor to use _get_column_name_list from
# DataFrameFormatter class and create a
# _get_formatted_column_labels function for code
# parity with DataFrameFormatter class.
if self.fmt.show_index_names:
name = self.columns.names[lnum]
Reported by Pylint.
Line: 348
Column: 3
# Column misalignment also occurs for
# a standard index when the columns index is named.
# Initially fill row with blank cells before column names.
# TODO: Refactor to remove code duplication with code block
# above for columns MultiIndex.
row = [""] * (self.row_levels - 1)
if self.fmt.index or self.show_col_idx_names:
# see gh-22747
# If to_html(index_names=False) do not show columns
Reported by Pylint.
Line: 355
Column: 3
# see gh-22747
# If to_html(index_names=False) do not show columns
# index names.
# TODO: Refactor to use _get_column_name_list from
# DataFrameFormatter class.
if self.fmt.show_index_names:
row.append(self.columns.name or "")
else:
row.append("")
Reported by Pylint.
Line: 414
Column: 19
nrows = len(self.fmt.tr_frame)
if self.fmt.index:
fmt = self.fmt._get_formatter("__index__")
if fmt is not None:
index_values = self.fmt.tr_frame.index.map(fmt)
else:
index_values = self.fmt.tr_frame.index.format()
Reported by Pylint.
Line: 31
Column: 1
from pandas.io.formats.printing import pprint_thing
class HTMLFormatter:
"""
Internal class for formatting output data in html.
This class is intended for shared functionality between
DataFrame.to_html() and DataFrame._repr_html_().
Any logic in common with other output formatting methods
Reported by Pylint.
Line: 43
Column: 5
indent_delta = 2
def __init__(
self,
formatter: DataFrameFormatter,
classes: str | list[str] | tuple[str, ...] | None = None,
border: int | None = None,
table_id: str | None = None,
Reported by Pylint.
Line: 71
Column: 5
for column, value in self.fmt.col_space.items()
}
def to_string(self) -> str:
lines = self.render()
if any(isinstance(x, str) for x in lines):
lines = [str(x) for x in lines]
return "\n".join(lines)
Reported by Pylint.
Line: 77
Column: 5
lines = [str(x) for x in lines]
return "\n".join(lines)
def render(self) -> list[str]:
self._write_table()
if self.should_show_dimensions:
by = chr(215) # ×
self.write(
Reported by Pylint.
setup.py
45 issues
Line: 113
Column: 9
user_options = [("all", "a", "")]
def initialize_options(self):
self.all = True
self._clean_me = []
self._clean_trees = []
base = pjoin("pandas", "_libs", "src")
tsbase = pjoin("pandas", "_libs", "tslibs", "src")
Reported by Pylint.
Line: 114
Column: 9
def initialize_options(self):
self.all = True
self._clean_me = []
self._clean_trees = []
base = pjoin("pandas", "_libs", "src")
tsbase = pjoin("pandas", "_libs", "tslibs", "src")
dt = pjoin(tsbase, "datetime")
Reported by Pylint.
Line: 115
Column: 9
def initialize_options(self):
self.all = True
self._clean_me = []
self._clean_trees = []
base = pjoin("pandas", "_libs", "src")
tsbase = pjoin("pandas", "_libs", "tslibs", "src")
dt = pjoin(tsbase, "datetime")
util = pjoin("pandas", "util")
Reported by Pylint.
Line: 124
Column: 9
parser = pjoin(base, "parser")
ujson_python = pjoin(base, "ujson", "python")
ujson_lib = pjoin(base, "ujson", "lib")
self._clean_exclude = [
pjoin(dt, "np_datetime.c"),
pjoin(dt, "np_datetime_strings.c"),
pjoin(parser, "tokenizer.c"),
pjoin(parser, "io.c"),
pjoin(ujson_python, "ujson.c"),
Reported by Pylint.
Line: 138
Column: 13
pjoin(util, "move.c"),
]
for root, dirs, files in os.walk("pandas"):
for f in files:
filepath = pjoin(root, f)
if filepath in self._clean_exclude:
continue
Reported by Pylint.
Line: 138
Column: 25
pjoin(util, "move.c"),
]
for root, dirs, files in os.walk("pandas"):
for f in files:
filepath = pjoin(root, f)
if filepath in self._clean_exclude:
continue
Reported by Pylint.
Line: 261
Column: 39
Subclass build_ext to get clearer report if Cython is necessary.
"""
def check_cython_extensions(self, extensions):
for ext in extensions:
for src in ext.sources:
if not os.path.exists(src):
print(f"{ext.name}: -> [{ext.sources}]")
raise Exception(
Reported by Pylint.
Line: 262
Column: 13
"""
def check_cython_extensions(self, extensions):
for ext in extensions:
for src in ext.sources:
if not os.path.exists(src):
print(f"{ext.name}: -> [{ext.sources}]")
raise Exception(
f"""Cython-generated file '{src}' not found.
Reported by Pylint.
Line: 285
Column: 31
C-compile method build_extension() with a no-op.
"""
def build_extension(self, ext):
pass
class DummyBuildSrc(Command):
"""numpy's build_src command interferes with Cython's build_ext."""
Reported by Pylint.
Line: 295
Column: 9
user_options = []
def initialize_options(self):
self.py_modules_dict = {}
def finalize_options(self):
pass
def run(self):
Reported by Pylint.
pandas/core/arrays/boolean.py
44 issues
Line: 9
Column: 1
import numpy as np
from pandas._libs import (
lib,
missing as libmissing,
)
from pandas._typing import (
ArrayLike,
Reported by Pylint.
Line: 9
Column: 1
import numpy as np
from pandas._libs import (
lib,
missing as libmissing,
)
from pandas._typing import (
ArrayLike,
Reported by Pylint.
Line: 42
Column: 5
)
if TYPE_CHECKING:
import pyarrow
@register_extension_dtype
class BooleanDtype(BaseMaskedDtype):
"""
Reported by Pylint.
Line: 115
Column: 9
"""
Construct BooleanArray from pyarrow Array/ChunkedArray.
"""
import pyarrow
if array.type != pyarrow.bool_():
raise TypeError(f"Expected array of boolean type, got {array.type} instead")
if isinstance(array, pyarrow.Array):
Reported by Pylint.
Line: 80
Column: 5
return np.bool_
@property
def kind(self) -> str:
return "b"
@property
def numpy_dtype(self) -> np.dtype:
return np.dtype("bool")
Reported by Pylint.
Line: 84
Column: 5
return "b"
@property
def numpy_dtype(self) -> np.dtype:
return np.dtype("bool")
@classmethod
def construct_array_type(cls) -> type_t[BooleanArray]:
"""
Reported by Pylint.
Line: 148
Column: 20
np.array([], dtype=np.bool_), np.array([], dtype=np.bool_)
)
else:
return BooleanArray._concat_same_type(results)
def coerce_to_array(
values, mask=None, copy: bool = False
) -> tuple[np.ndarray, np.ndarray]:
Reported by Pylint.
Line: 171
Column: 24
if isinstance(values, BooleanArray):
if mask is not None:
raise ValueError("cannot pass mask for BooleanArray input")
values, mask = values._data, values._mask
if copy:
values = values.copy()
mask = mask.copy()
return values, mask
Reported by Pylint.
Line: 171
Column: 38
if isinstance(values, BooleanArray):
if mask is not None:
raise ValueError("cannot pass mask for BooleanArray input")
values, mask = values._data, values._mask
if copy:
values = values.copy()
mask = mask.copy()
return values, mask
Reported by Pylint.
Line: 320
Column: 5
return BooleanArray(values, mask)
@classmethod
def _from_sequence_of_strings(
cls,
strings: list[str],
*,
dtype: Dtype | None = None,
copy: bool = False,
Reported by Pylint.
pandas/tests/io/pytables/test_read.py
44 issues
Line: 5
Column: 1
import re
import numpy as np
import pytest
from pandas._libs.tslibs import Timestamp
from pandas.compat import is_platform_windows
import pandas as pd
Reported by Pylint.
Line: 83
Column: 13
msg = re.escape("select_column() got an unexpected keyword argument 'where'")
with pytest.raises(TypeError, match=msg):
store.select_column("df", "index", where=["index>5"])
# valid
result = store.select_column("df", "index")
tm.assert_almost_equal(result.values, Series(df.index).values)
assert isinstance(result, Series)
Reported by Pylint.
Line: 296
Column: 5
def test_read_from_py_localpath(setup_path):
# GH11773
from py.path import local as LocalPath
expected = DataFrame(
np.random.rand(4, 5), index=list("abcd"), columns=list("ABCDE")
)
with ensure_clean_path(setup_path) as filename:
Reported by Pylint.
Line: 140
Column: 41
tm.assert_series_equal(result, expected)
def test_pytables_native_read(datapath, setup_path):
with ensure_clean_store(
datapath("io", "data", "legacy_hdf/pytables_native.h5"), mode="r"
) as store:
d2 = store["detector/readout"]
assert isinstance(d2, DataFrame)
Reported by Pylint.
Line: 149
Column: 42
@pytest.mark.skipif(is_platform_windows(), reason="native2 read fails oddly on windows")
def test_pytables_native2_read(datapath, setup_path):
with ensure_clean_store(
datapath("io", "data", "legacy_hdf", "pytables_native2.h5"), mode="r"
) as store:
str(store)
d1 = store["detector"]
Reported by Pylint.
Line: 158
Column: 55
assert isinstance(d1, DataFrame)
def test_legacy_table_fixed_format_read_py2(datapath, setup_path):
# GH 24510
# legacy table with fixed format written in Python 2
with ensure_clean_store(
datapath("io", "data", "legacy_hdf", "legacy_table_fixed_py2.h5"), mode="r"
) as store:
Reported by Pylint.
Line: 173
Column: 64
tm.assert_frame_equal(expected, result)
def test_legacy_table_fixed_format_read_datetime_py2(datapath, setup_path):
# GH 31750
# legacy table with fixed format and datetime64 column written in Python 2
with ensure_clean_store(
datapath("io", "data", "legacy_hdf", "legacy_table_fixed_datetime_py2.h5"),
mode="r",
Reported by Pylint.
Line: 189
Column: 42
tm.assert_frame_equal(expected, result)
def test_legacy_table_read_py2(datapath, setup_path):
# issue: 24925
# legacy table written in Python 2
with ensure_clean_store(
datapath("io", "data", "legacy_hdf", "legacy_table_py2.h5"), mode="r"
) as store:
Reported by Pylint.
Line: 311
Column: 33
@pytest.mark.parametrize("format", ["fixed", "table"])
def test_read_hdf_series_mode_r(format, setup_path):
# GH 16583
# Tests that reading a Series saved to an HDF file
# still works if a mode='r' argument is supplied
series = tm.makeFloatSeries()
with ensure_clean_path(setup_path) as path:
Reported by Pylint.
Line: 1
Column: 1
from pathlib import Path
import re
import numpy as np
import pytest
from pandas._libs.tslibs import Timestamp
from pandas.compat import is_platform_windows
Reported by Pylint.
pandas/tests/resample/test_time_grouper.py
44 issues
Line: 5
Column: 1
from operator import methodcaller
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
Series,
Reported by Pylint.
Line: 213
Column: 22
expected = normal_result.append(pad)
expected = expected.sort_index()
dti = date_range(start="2013-01-01", freq="D", periods=5, name="key")
expected.index = dti._with_freq(None) # TODO: is this desired?
tm.assert_frame_equal(expected, dt_result)
assert dt_result.index.name == "key"
def test_aggregate_with_nat_size():
Reported by Pylint.
Line: 213
Column: 22
expected = normal_result.append(pad)
expected = expected.sort_index()
dti = date_range(start="2013-01-01", freq="D", periods=5, name="key")
expected.index = dti._with_freq(None) # TODO: is this desired?
tm.assert_frame_equal(expected, dt_result)
assert dt_result.index.name == "key"
def test_aggregate_with_nat_size():
Reported by Pylint.
Line: 243
Column: 22
pad = Series([0], index=[3])
expected = normal_result.append(pad)
expected = expected.sort_index()
expected.index = date_range(
start="2013-01-01", freq="D", periods=5, name="key"
)._with_freq(None)
tm.assert_series_equal(expected, dt_result)
assert dt_result.index.name == "key"
Reported by Pylint.
Line: 243
Column: 22
pad = Series([0], index=[3])
expected = normal_result.append(pad)
expected = expected.sort_index()
expected.index = date_range(
start="2013-01-01", freq="D", periods=5, name="key"
)._with_freq(None)
tm.assert_series_equal(expected, dt_result)
assert dt_result.index.name == "key"
Reported by Pylint.
Line: 67
Column: 21
df = DataFrame({"open": 1, "close": 2}, index=ind)
tg = Grouper(freq="M")
_, grouper, _ = tg._get_grouper(df)
# Errors
grouped = df.groupby(grouper, group_keys=False)
def f(df):
Reported by Pylint.
Line: 150
Column: 5
# if TimeGrouper is used included, 'nth' doesn't work yet
"""
for func in ['nth']:
expected = getattr(normal_grouped, func)(3)
expected.index = date_range(start='2013-01-01',
freq='D', periods=5, name='key')
dt_result = getattr(dt_grouped, func)(3)
Reported by Pylint.
Line: 213
Column: 22
expected = normal_result.append(pad)
expected = expected.sort_index()
dti = date_range(start="2013-01-01", freq="D", periods=5, name="key")
expected.index = dti._with_freq(None) # TODO: is this desired?
tm.assert_frame_equal(expected, dt_result)
assert dt_result.index.name == "key"
def test_aggregate_with_nat_size():
Reported by Pylint.
Line: 213
Column: 3
expected = normal_result.append(pad)
expected = expected.sort_index()
dti = date_range(start="2013-01-01", freq="D", periods=5, name="key")
expected.index = dti._with_freq(None) # TODO: is this desired?
tm.assert_frame_equal(expected, dt_result)
assert dt_result.index.name == "key"
def test_aggregate_with_nat_size():
Reported by Pylint.
Line: 243
Column: 22
pad = Series([0], index=[3])
expected = normal_result.append(pad)
expected = expected.sort_index()
expected.index = date_range(
start="2013-01-01", freq="D", periods=5, name="key"
)._with_freq(None)
tm.assert_series_equal(expected, dt_result)
assert dt_result.index.name == "key"
Reported by Pylint.
pandas/core/internals/construction.py
44 issues
Line: 20
Column: 1
import numpy as np
import numpy.ma as ma
from pandas._libs import lib
from pandas._typing import (
ArrayLike,
DtypeObj,
Manager,
)
Reported by Pylint.
Line: 460
Column: 3
columns = Index(keys)
arrays = [com.maybe_iterable_to_list(data[k]) for k in keys]
# GH#24096 need copy to be deep for datetime64tz case
# TODO: See if we can avoid these copies
arrays = [arr if not isinstance(arr, Index) else arr._data for arr in arrays]
arrays = [
arr if not is_datetime64tz_dtype(arr) else arr.copy() for arr in arrays
]
Reported by Pylint.
Line: 461
Column: 58
arrays = [com.maybe_iterable_to_list(data[k]) for k in keys]
# GH#24096 need copy to be deep for datetime64tz case
# TODO: See if we can avoid these copies
arrays = [arr if not isinstance(arr, Index) else arr._data for arr in arrays]
arrays = [
arr if not is_datetime64tz_dtype(arr) else arr.copy() for arr in arrays
]
if copy:
Reported by Pylint.
Line: 475
Column: 3
else x.copy()
for x in arrays
]
# TODO: can we get rid of the dt64tz special case above?
return arrays_to_mgr(arrays, columns, index, dtype=dtype, typ=typ, consolidate=copy)
def nested_data_to_arrays(
Reported by Pylint.
Line: 530
Column: 18
):
# On older numpy, np.asarray below apparently does not call __array__,
# so nanoseconds get dropped.
values = values._ndarray
if not isinstance(values, (np.ndarray, ABCSeries, Index)):
if len(values) == 0:
return np.empty((0, 0), dtype=object)
elif isinstance(values, range):
Reported by Pylint.
Line: 584
Column: 19
# are putting it into an ndarray later
val = val.reindex(index, copy=False)
val = val._values
else:
if isinstance(val, dict):
# GH#41785 this _should_ be equivalent to (but faster than)
# val = create_series_with_explicit_dtype(val, index=index)._values
if oindex is None:
Reported by Pylint.
Line: 598
Column: 46
else:
# see test_constructor_subclass_dict
val = dict(val)
val = lib.fast_multiget(val, oindex._values, default=np.nan)
val = sanitize_array(
val, index, dtype=dtype, copy=False, raise_cast_failure=False
)
com.require_length_match(val, index)
Reported by Pylint.
Line: 794
Column: 17
# see test_from_records_with_index_data, test_from_records_bad_index_column
if columns is not None:
arrays = [
data._ixs(i, axis=1).values
for i, col in enumerate(data.columns)
if col in columns
]
else:
columns = data.columns
Reported by Pylint.
Line: 800
Column: 23
]
else:
columns = data.columns
arrays = [data._ixs(i, axis=1).values for i in range(len(columns))]
return arrays, columns
if not len(data):
if isinstance(data, np.ndarray):
Reported by Pylint.
Line: 813
Column: 3
if len(data) == 0:
# GH#42456 the indexing above results in list of 2D ndarrays
# TODO: is that an issue with numpy?
for i, arr in enumerate(arrays):
if arr.ndim == 2:
arrays[i] = arr[:, 0]
return arrays, columns
Reported by Pylint.
pandas/conftest.py
44 issues
Line: 37
Column: 1
tzlocal,
tzutc,
)
import hypothesis
from hypothesis import strategies as st
import numpy as np
import pytest
from pytz import (
FixedOffset,
Reported by Pylint.
Line: 38
Column: 1
tzutc,
)
import hypothesis
from hypothesis import strategies as st
import numpy as np
import pytest
from pytz import (
FixedOffset,
utc,
Reported by Pylint.
Line: 40
Column: 1
import hypothesis
from hypothesis import strategies as st
import numpy as np
import pytest
from pytz import (
FixedOffset,
utc,
)
Reported by Pylint.
Line: 41
Column: 1
from hypothesis import strategies as st
import numpy as np
import pytest
from pytz import (
FixedOffset,
utc,
)
import pandas.util._test_decorators as td
Reported by Pylint.
Line: 505
Column: 68
@pytest.fixture(
params=[
key for key in indices_dict if not isinstance(indices_dict[key], MultiIndex)
]
)
def index_flat(request):
"""
index fixture, but excluding MultiIndex cases.
Reported by Pylint.
Line: 1552
Column: 5
Will raise a skip if IPython is not installed.
"""
pytest.importorskip("IPython", minversion="6.0.0")
from IPython.core.interactiveshell import InteractiveShell
# GH#35711 make sure sqlite history file handle is not leaked
from traitlets.config import Config # isort:skip
c = Config()
Reported by Pylint.
Line: 1555
Column: 5
from IPython.core.interactiveshell import InteractiveShell
# GH#35711 make sure sqlite history file handle is not leaked
from traitlets.config import Config # isort:skip
c = Config()
c.HistoryManager.hist_file = ":memory:"
return InteractiveShell(config=c)
Reported by Pylint.
Line: 1568
Column: 5
"""
Yields scipy sparse matrix classes.
"""
from scipy import sparse
return getattr(sparse, request.param + "_matrix")
@pytest.fixture(
Reported by Pylint.
Line: 1599
Column: 5
@pytest.fixture()
def fsspectest():
pytest.importorskip("fsspec")
from fsspec import register_implementation
from fsspec.implementations.memory import MemoryFileSystem
from fsspec.registry import _registry as registry
class TestMemoryFS(MemoryFileSystem):
protocol = "testmem"
Reported by Pylint.
Line: 1600
Column: 5
def fsspectest():
pytest.importorskip("fsspec")
from fsspec import register_implementation
from fsspec.implementations.memory import MemoryFileSystem
from fsspec.registry import _registry as registry
class TestMemoryFS(MemoryFileSystem):
protocol = "testmem"
test = [None]
Reported by Pylint.