The following issues were found
keras/integration_test/module_test.py
37 issues
Line: 16
Column: 1
# limitations under the License.
# ==============================================================================
import tensorflow as tf
class ModuleTest(tf.test.TestCase):
def test_module_discover_layer_variable(self):
Reported by Pylint.
Line: 1
Column: 1
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
Reported by Pylint.
Line: 19
Column: 1
import tensorflow as tf
class ModuleTest(tf.test.TestCase):
def test_module_discover_layer_variable(self):
m = tf.Module()
m.a = tf.keras.layers.Dense(1)
m.b = tf.keras.layers.Dense(2)
Reported by Pylint.
Line: 21
Column: 3
class ModuleTest(tf.test.TestCase):
def test_module_discover_layer_variable(self):
m = tf.Module()
m.a = tf.keras.layers.Dense(1)
m.b = tf.keras.layers.Dense(2)
# The weights of the layer has not been created yet.
Reported by Pylint.
Line: 21
Column: 1
class ModuleTest(tf.test.TestCase):
def test_module_discover_layer_variable(self):
m = tf.Module()
m.a = tf.keras.layers.Dense(1)
m.b = tf.keras.layers.Dense(2)
# The weights of the layer has not been created yet.
Reported by Pylint.
Line: 22
Column: 5
class ModuleTest(tf.test.TestCase):
def test_module_discover_layer_variable(self):
m = tf.Module()
m.a = tf.keras.layers.Dense(1)
m.b = tf.keras.layers.Dense(2)
# The weights of the layer has not been created yet.
self.assertEmpty(m.variables)
Reported by Pylint.
Line: 22
Column: 1
class ModuleTest(tf.test.TestCase):
def test_module_discover_layer_variable(self):
m = tf.Module()
m.a = tf.keras.layers.Dense(1)
m.b = tf.keras.layers.Dense(2)
# The weights of the layer has not been created yet.
self.assertEmpty(m.variables)
Reported by Pylint.
Line: 23
Column: 1
def test_module_discover_layer_variable(self):
m = tf.Module()
m.a = tf.keras.layers.Dense(1)
m.b = tf.keras.layers.Dense(2)
# The weights of the layer has not been created yet.
self.assertEmpty(m.variables)
self.assertLen(m.submodules, 2)
Reported by Pylint.
Line: 24
Column: 1
def test_module_discover_layer_variable(self):
m = tf.Module()
m.a = tf.keras.layers.Dense(1)
m.b = tf.keras.layers.Dense(2)
# The weights of the layer has not been created yet.
self.assertEmpty(m.variables)
self.assertLen(m.submodules, 2)
Reported by Pylint.
Line: 27
Column: 1
m.b = tf.keras.layers.Dense(2)
# The weights of the layer has not been created yet.
self.assertEmpty(m.variables)
self.assertLen(m.submodules, 2)
inputs = tf.keras.layers.Input((1,))
m.a(inputs)
m.b(inputs)
Reported by Pylint.
keras/tools/pip_package/create_pip_helper.py
36 issues
Line: 47
Column: 1
])
class PipPackagingError(Exception):
pass
def create_init_files(pip_root):
"""Create __init__.py in pip directory tree.
Reported by Pylint.
Line: 48
Column: 1
class PipPackagingError(Exception):
pass
def create_init_files(pip_root):
"""Create __init__.py in pip directory tree.
Reported by Pylint.
Line: 52
Column: 1
def create_init_files(pip_root):
"""Create __init__.py in pip directory tree.
These files are auto-generated by Bazel when doing typical build/test, but
do not get auto-generated by the pip build process. Currently, the entire
directory tree is just python files, so its fine to just create all of the
init files.
Reported by Pylint.
Line: 62
Column: 1
Args:
pip_root: Root directory of code being packaged into pip.
"""
for path, subdirs, _ in os.walk(pip_root):
for subdir in subdirs:
init_file_path = os.path.join(path, subdir, '__init__.py')
if any(excluded_path in init_file_path
for excluded_path in EXCLUDED_INIT_FILE_DIRECTORIES):
continue
Reported by Pylint.
Line: 63
Column: 1
pip_root: Root directory of code being packaged into pip.
"""
for path, subdirs, _ in os.walk(pip_root):
for subdir in subdirs:
init_file_path = os.path.join(path, subdir, '__init__.py')
if any(excluded_path in init_file_path
for excluded_path in EXCLUDED_INIT_FILE_DIRECTORIES):
continue
if not os.path.exists(init_file_path):
Reported by Pylint.
Line: 64
Column: 1
"""
for path, subdirs, _ in os.walk(pip_root):
for subdir in subdirs:
init_file_path = os.path.join(path, subdir, '__init__.py')
if any(excluded_path in init_file_path
for excluded_path in EXCLUDED_INIT_FILE_DIRECTORIES):
continue
if not os.path.exists(init_file_path):
# Create empty file
Reported by Pylint.
Line: 65
Column: 1
for path, subdirs, _ in os.walk(pip_root):
for subdir in subdirs:
init_file_path = os.path.join(path, subdir, '__init__.py')
if any(excluded_path in init_file_path
for excluded_path in EXCLUDED_INIT_FILE_DIRECTORIES):
continue
if not os.path.exists(init_file_path):
# Create empty file
open(init_file_path, 'w').close()
Reported by Pylint.
Line: 67
Column: 1
init_file_path = os.path.join(path, subdir, '__init__.py')
if any(excluded_path in init_file_path
for excluded_path in EXCLUDED_INIT_FILE_DIRECTORIES):
continue
if not os.path.exists(init_file_path):
# Create empty file
open(init_file_path, 'w').close()
Reported by Pylint.
Line: 68
Column: 1
if any(excluded_path in init_file_path
for excluded_path in EXCLUDED_INIT_FILE_DIRECTORIES):
continue
if not os.path.exists(init_file_path):
# Create empty file
open(init_file_path, 'w').close()
def verify_python_files_in_pip(pip_root, bazel_root):
Reported by Pylint.
Line: 70
Column: 1
continue
if not os.path.exists(init_file_path):
# Create empty file
open(init_file_path, 'w').close()
def verify_python_files_in_pip(pip_root, bazel_root):
"""Verifies all expected files are packaged into Pip.
Reported by Pylint.
keras/layers/preprocessing/benchmarks/category_cross_hash_dense_benchmark.py
36 issues
Line: 17
Column: 1
# ==============================================================================
"""Benchmark for KPL implementation of categorical cross hash columns with dense inputs."""
import tensorflow as tf
import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import category_crossing
from keras.layers.preprocessing import hashing
Reported by Pylint.
Line: 19
Column: 1
import tensorflow as tf
import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import category_crossing
from keras.layers.preprocessing import hashing
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm
Reported by Pylint.
Line: 20
Column: 1
import tensorflow as tf
import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import category_crossing
from keras.layers.preprocessing import hashing
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm
# This is required as of 3/2021 because otherwise we drop into graph mode.
Reported by Pylint.
Line: 21
Column: 1
import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import category_crossing
from keras.layers.preprocessing import hashing
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm
# This is required as of 3/2021 because otherwise we drop into graph mode.
tf.compat.v1.enable_v2_behavior()
Reported by Pylint.
Line: 22
Column: 1
import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import category_crossing
from keras.layers.preprocessing import hashing
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm
# This is required as of 3/2021 because otherwise we drop into graph mode.
tf.compat.v1.enable_v2_behavior()
Reported by Pylint.
Line: 23
Column: 1
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import category_crossing
from keras.layers.preprocessing import hashing
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm
# This is required as of 3/2021 because otherwise we drop into graph mode.
tf.compat.v1.enable_v2_behavior()
NUM_REPEATS = 10
Reported by Pylint.
Line: 32
Column: 1
BATCH_SIZES = [32, 256]
def embedding_varlen(batch_size, max_length):
"""Benchmark a variable-length embedding."""
# Data and constants.
num_buckets = 10000
vocab = fc_bm.create_vocabulary(32768)
Reported by Pylint.
Line: 33
Column: 1
def embedding_varlen(batch_size, max_length):
"""Benchmark a variable-length embedding."""
# Data and constants.
num_buckets = 10000
vocab = fc_bm.create_vocabulary(32768)
data_a = fc_bm.create_string_data(
Reported by Pylint.
Line: 36
Column: 1
"""Benchmark a variable-length embedding."""
# Data and constants.
num_buckets = 10000
vocab = fc_bm.create_vocabulary(32768)
data_a = fc_bm.create_string_data(
max_length, batch_size * NUM_REPEATS, vocab, pct_oov=0.0)
data_b = fc_bm.create_string_data(
max_length, batch_size * NUM_REPEATS, vocab, pct_oov=0.0)
Reported by Pylint.
Line: 37
Column: 1
# Data and constants.
num_buckets = 10000
vocab = fc_bm.create_vocabulary(32768)
data_a = fc_bm.create_string_data(
max_length, batch_size * NUM_REPEATS, vocab, pct_oov=0.0)
data_b = fc_bm.create_string_data(
max_length, batch_size * NUM_REPEATS, vocab, pct_oov=0.0)
Reported by Pylint.
keras/distribute/keras_stateful_lstm_model_correctness_test.py
36 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for stateful tf.keras LSTM models using DistributionStrategy."""
import tensorflow.compat.v2 as tf
import numpy as np
import keras
from keras.distribute import keras_correctness_test_base
Reported by Pylint.
Line: 42
Column: 1
use_validation_data=False))
class DistributionStrategyStatefulLstmModelCorrectnessTest(
keras_correctness_test_base
.TestDistributionStrategyEmbeddingModelCorrectnessBase):
def get_model(self,
max_words=10,
Reported by Pylint.
Line: 42
Column: 1
use_validation_data=False))
class DistributionStrategyStatefulLstmModelCorrectnessTest(
keras_correctness_test_base
.TestDistributionStrategyEmbeddingModelCorrectnessBase):
def get_model(self,
max_words=10,
Reported by Pylint.
Line: 46
Column: 3
keras_correctness_test_base
.TestDistributionStrategyEmbeddingModelCorrectnessBase):
def get_model(self,
max_words=10,
initial_weights=None,
distribution=None,
input_shapes=None):
del input_shapes
Reported by Pylint.
Line: 52
Column: 18
distribution=None,
input_shapes=None):
del input_shapes
batch_size = keras_correctness_test_base._GLOBAL_BATCH_SIZE
with keras_correctness_test_base.MaybeDistributionScope(distribution):
word_ids = keras.layers.Input(
shape=(max_words,),
batch_size=batch_size,
Reported by Pylint.
Line: 79
Column: 3
metrics=['sparse_categorical_accuracy'])
return model
# TODO(jhseu): Disabled to fix b/130808953. Need to investigate why it
# doesn't work and enable for DistributionStrategy more generally.
@tf.__internal__.distribute.combinations.generate(test_combinations_for_stateful_embedding_model())
def disabled_test_stateful_lstm_model_correctness(
self, distribution, use_numpy, use_validation_data):
self.run_correctness_test(
Reported by Pylint.
Line: 27
Column: 1
def strategies_for_stateful_embedding_model():
"""Returns TPUStrategy with single core device assignment."""
return [
tf.__internal__.distribute.combinations.tpu_strategy_one_core,
]
Reported by Pylint.
Line: 29
Column: 1
def strategies_for_stateful_embedding_model():
"""Returns TPUStrategy with single core device assignment."""
return [
tf.__internal__.distribute.combinations.tpu_strategy_one_core,
]
def test_combinations_for_stateful_embedding_model():
Reported by Pylint.
Line: 34
Column: 1
]
def test_combinations_for_stateful_embedding_model():
return (tf.__internal__.test.combinations.combine(
distribution=strategies_for_stateful_embedding_model(),
mode='graph',
use_numpy=False,
use_validation_data=False))
Reported by Pylint.
Line: 35
Column: 1
def test_combinations_for_stateful_embedding_model():
return (tf.__internal__.test.combinations.combine(
distribution=strategies_for_stateful_embedding_model(),
mode='graph',
use_numpy=False,
use_validation_data=False))
Reported by Pylint.
keras/distribute/worker_training_state.py
35 issues
Line: 17
Column: 1
# ==============================================================================
"""Training state management."""
import tensorflow.compat.v2 as tf
import os
from keras import backend
from keras.distribute import distributed_file_utils
from keras.utils import mode_keys
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
import os
from keras import backend
from keras.distribute import distributed_file_utils
from keras.utils import mode_keys
# Constant for `tf.keras.Model` attribute to store the epoch at which the most
Reported by Pylint.
Line: 32
Column: 1
class WorkerTrainingState:
"""Training state management class.
This class provides apis for backing up and restoring the training state.
This allows model and epoch information to be saved periodically and restore
for fault-tolerance, also known as preemption-recovery purpose.
"""
Reported by Pylint.
Line: 39
Column: 1
for fault-tolerance, also known as preemption-recovery purpose.
"""
def __init__(self, model, checkpoint_dir):
self._model = model
# The epoch at which the checkpoint is saved. Used for fault-tolerance.
# GPU device only has int64 dtype registered VarHandleOp.
self._ckpt_saved_epoch = tf.Variable(
Reported by Pylint.
Line: 40
Column: 1
"""
def __init__(self, model, checkpoint_dir):
self._model = model
# The epoch at which the checkpoint is saved. Used for fault-tolerance.
# GPU device only has int64 dtype registered VarHandleOp.
self._ckpt_saved_epoch = tf.Variable(
initial_value=tf.constant(
Reported by Pylint.
Line: 44
Column: 1
# The epoch at which the checkpoint is saved. Used for fault-tolerance.
# GPU device only has int64 dtype registered VarHandleOp.
self._ckpt_saved_epoch = tf.Variable(
initial_value=tf.constant(
CKPT_SAVED_EPOCH_UNUSED_VALUE, dtype=tf.int64),
name='ckpt_saved_epoch')
# Variable initialization.
Reported by Pylint.
Line: 50
Column: 1
name='ckpt_saved_epoch')
# Variable initialization.
backend.set_value(self._ckpt_saved_epoch, CKPT_SAVED_EPOCH_UNUSED_VALUE)
# _ckpt_saved_epoch gets tracked and is included in the checkpoint file
# when backing up.
checkpoint = tf.train.Checkpoint(
model=self._model, ckpt_saved_epoch=self._ckpt_saved_epoch,
Reported by Pylint.
Line: 54
Column: 1
# _ckpt_saved_epoch gets tracked and is included in the checkpoint file
# when backing up.
checkpoint = tf.train.Checkpoint(
model=self._model, ckpt_saved_epoch=self._ckpt_saved_epoch,
train_counter=self._model._train_counter)
# If this is single-worker training, checkpoint_dir are the same for
# write_checkpoint_manager and read_checkpoint_manager.
Reported by Pylint.
Line: 69
Column: 1
# workers need to perform `save()`.
# But all workers should restore from the same checkpoint_dir as passed in
# read_checkpoint_manager.
self.read_checkpoint_manager = tf.train.CheckpointManager(
checkpoint,
directory=os.path.join(checkpoint_dir, 'chief'),
max_to_keep=1)
write_checkpoint_dir = distributed_file_utils.write_dirpath(
checkpoint_dir, self._model.distribute_strategy)
Reported by Pylint.
Line: 73
Column: 1
checkpoint,
directory=os.path.join(checkpoint_dir, 'chief'),
max_to_keep=1)
write_checkpoint_dir = distributed_file_utils.write_dirpath(
checkpoint_dir, self._model.distribute_strategy)
if self._model.distribute_strategy.extended.should_checkpoint:
self.write_checkpoint_manager = self.read_checkpoint_manager
else:
self.write_checkpoint_manager = tf.train.CheckpointManager(
Reported by Pylint.
keras/feature_column/dense_features_v2.py
35 issues
Line: 21
Column: 1
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v2 as tf
from keras.feature_column import base_feature_layer as kfc
from keras.feature_column import dense_features
from keras.utils import tf_contextlib
from tensorflow.python.util.tf_export import keras_export
Reported by Pylint.
Line: 25
Column: 1
from keras.feature_column import base_feature_layer as kfc
from keras.feature_column import dense_features
from keras.utils import tf_contextlib
from tensorflow.python.util.tf_export import keras_export
@keras_export('keras.layers.DenseFeatures', v1=[])
class DenseFeatures(dense_features.DenseFeatures):
"""A layer that produces a dense `Tensor` based on given `feature_columns`.
Reported by Pylint.
Line: 115
Column: 5
# We explicitly track these variables since `name` is not guaranteed to be
# unique and disable manual tracking that the add_weight call does.
with no_manual_dependency_tracking_scope(self._layer):
var = self._layer.add_weight(
name=name,
shape=shape,
dtype=dtype,
initializer=initializer,
Reported by Pylint.
Line: 29
Column: 1
@keras_export('keras.layers.DenseFeatures', v1=[])
class DenseFeatures(dense_features.DenseFeatures):
"""A layer that produces a dense `Tensor` based on given `feature_columns`.
Generally a single example in training data is described with FeatureColumns.
At the first layer of the model, this column oriented data should be converted
to a single `Tensor`.
Reported by Pylint.
Line: 30
Column: 1
@keras_export('keras.layers.DenseFeatures', v1=[])
class DenseFeatures(dense_features.DenseFeatures):
"""A layer that produces a dense `Tensor` based on given `feature_columns`.
Generally a single example in training data is described with FeatureColumns.
At the first layer of the model, this column oriented data should be converted
to a single `Tensor`.
Reported by Pylint.
Line: 61
Column: 1
```
"""
def __init__(self,
feature_columns,
trainable=True,
name=None,
**kwargs):
"""Creates a DenseFeatures object.
Reported by Pylint.
Line: 66
Column: 1
trainable=True,
name=None,
**kwargs):
"""Creates a DenseFeatures object.
Args:
feature_columns: An iterable containing the FeatureColumns to use as
inputs to your model. All items should be instances of classes derived
from `DenseColumn` such as `numeric_column`, `embedding_column`,
Reported by Pylint.
Line: 83
Column: 5
Raises:
ValueError: if an item in `feature_columns` is not a `DenseColumn`.
"""
super(DenseFeatures, self).__init__(
feature_columns=feature_columns,
trainable=trainable,
name=name,
**kwargs)
self._state_manager = _StateManagerImplV2(self, self.trainable)
Reported by Pylint.
Line: 83
Column: 1
Raises:
ValueError: if an item in `feature_columns` is not a `DenseColumn`.
"""
super(DenseFeatures, self).__init__(
feature_columns=feature_columns,
trainable=trainable,
name=name,
**kwargs)
self._state_manager = _StateManagerImplV2(self, self.trainable)
Reported by Pylint.
Line: 88
Column: 1
trainable=trainable,
name=name,
**kwargs)
self._state_manager = _StateManagerImplV2(self, self.trainable)
def build(self, _):
for column in self._feature_columns:
with tf.name_scope(column.name):
column.create_state(self._state_manager)
Reported by Pylint.
keras/tests/serialization_util_test.py
35 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for serialization functions."""
import tensorflow.compat.v2 as tf
import json
from keras import combinations
from keras import keras_parameterized
from keras.engine import input_layer
Reported by Pylint.
Line: 20
Column: 1
import tensorflow.compat.v2 as tf
import json
from keras import combinations
from keras import keras_parameterized
from keras.engine import input_layer
from keras.engine import sequential
from keras.engine import training
from keras.layers import core
Reported by Pylint.
Line: 21
Column: 1
import json
from keras import combinations
from keras import keras_parameterized
from keras.engine import input_layer
from keras.engine import sequential
from keras.engine import training
from keras.layers import core
from keras.saving.saved_model import json_utils
Reported by Pylint.
Line: 22
Column: 1
import json
from keras import combinations
from keras import keras_parameterized
from keras.engine import input_layer
from keras.engine import sequential
from keras.engine import training
from keras.layers import core
from keras.saving.saved_model import json_utils
Reported by Pylint.
Line: 23
Column: 1
from keras import combinations
from keras import keras_parameterized
from keras.engine import input_layer
from keras.engine import sequential
from keras.engine import training
from keras.layers import core
from keras.saving.saved_model import json_utils
Reported by Pylint.
Line: 24
Column: 1
from keras import keras_parameterized
from keras.engine import input_layer
from keras.engine import sequential
from keras.engine import training
from keras.layers import core
from keras.saving.saved_model import json_utils
@combinations.generate(combinations.combine(mode=["graph", "eager"]))
Reported by Pylint.
Line: 25
Column: 1
from keras.engine import input_layer
from keras.engine import sequential
from keras.engine import training
from keras.layers import core
from keras.saving.saved_model import json_utils
@combinations.generate(combinations.combine(mode=["graph", "eager"]))
class SerializationTests(keras_parameterized.TestCase):
Reported by Pylint.
Line: 26
Column: 1
from keras.engine import sequential
from keras.engine import training
from keras.layers import core
from keras.saving.saved_model import json_utils
@combinations.generate(combinations.combine(mode=["graph", "eager"]))
class SerializationTests(keras_parameterized.TestCase):
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
import json
from keras import combinations
from keras import keras_parameterized
from keras.engine import input_layer
from keras.engine import sequential
from keras.engine import training
Reported by Pylint.
Line: 30
Column: 1
@combinations.generate(combinations.combine(mode=["graph", "eager"]))
class SerializationTests(keras_parameterized.TestCase):
def test_serialize_dense(self):
dense = core.Dense(3)
dense(tf.constant([[4.]]))
round_trip = json.loads(json.dumps(
Reported by Pylint.
keras/distribute/distributed_file_utils.py
35 issues
Line: 47
Column: 1
Experimental. API is subject to change.
"""
import tensorflow.compat.v2 as tf
import os
def _get_base_dirpath(strategy):
Reported by Pylint.
Line: 112
Column: 3
# If strategy is still not available, this is not in distributed training.
# Fallback to no-op.
return
# TODO(anjalisridhar): Consider removing the check for multi worker mode since
# it is redundant when used with the should_checkpoint property.
if (strategy.extended._in_multi_worker_mode() and # pylint: disable=protected-access
not strategy.extended.should_checkpoint):
# If this worker is not chief and hence should not save file, remove
# the temporary directory.
Reported by Pylint.
Line: 49
Column: 1
import tensorflow.compat.v2 as tf
import os
def _get_base_dirpath(strategy):
task_id = strategy.extended._task_id # pylint: disable=protected-access
return 'workertemp_' + str(task_id)
Reported by Pylint.
Line: 53
Column: 1
def _get_base_dirpath(strategy):
task_id = strategy.extended._task_id # pylint: disable=protected-access
return 'workertemp_' + str(task_id)
def _is_temp_dir(dirpath, strategy):
return dirpath.endswith(_get_base_dirpath(strategy))
Reported by Pylint.
Line: 54
Column: 1
def _get_base_dirpath(strategy):
task_id = strategy.extended._task_id # pylint: disable=protected-access
return 'workertemp_' + str(task_id)
def _is_temp_dir(dirpath, strategy):
return dirpath.endswith(_get_base_dirpath(strategy))
Reported by Pylint.
Line: 58
Column: 1
def _is_temp_dir(dirpath, strategy):
return dirpath.endswith(_get_base_dirpath(strategy))
def _get_temp_dir(dirpath, strategy):
if _is_temp_dir(dirpath, strategy):
temp_dir = dirpath
Reported by Pylint.
Line: 62
Column: 1
def _get_temp_dir(dirpath, strategy):
if _is_temp_dir(dirpath, strategy):
temp_dir = dirpath
else:
temp_dir = os.path.join(dirpath, _get_base_dirpath(strategy))
tf.io.gfile.makedirs(temp_dir)
return temp_dir
Reported by Pylint.
Line: 63
Column: 1
def _get_temp_dir(dirpath, strategy):
if _is_temp_dir(dirpath, strategy):
temp_dir = dirpath
else:
temp_dir = os.path.join(dirpath, _get_base_dirpath(strategy))
tf.io.gfile.makedirs(temp_dir)
return temp_dir
Reported by Pylint.
Line: 64
Column: 1
def _get_temp_dir(dirpath, strategy):
if _is_temp_dir(dirpath, strategy):
temp_dir = dirpath
else:
temp_dir = os.path.join(dirpath, _get_base_dirpath(strategy))
tf.io.gfile.makedirs(temp_dir)
return temp_dir
Reported by Pylint.
Line: 65
Column: 1
if _is_temp_dir(dirpath, strategy):
temp_dir = dirpath
else:
temp_dir = os.path.join(dirpath, _get_base_dirpath(strategy))
tf.io.gfile.makedirs(temp_dir)
return temp_dir
def write_dirpath(dirpath, strategy):
Reported by Pylint.
keras/distribute/collective_all_reduce_strategy_test.py
34 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for CollectiveAllReduceStrategy."""
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
from keras import layers
from keras.engine import training
from keras.optimizer_v2 import gradient_descent as gradient_descent_keras
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
from keras import layers
from keras.engine import training
from keras.optimizer_v2 import gradient_descent as gradient_descent_keras
Reported by Pylint.
Line: 32
Column: 1
tf.__internal__.distribute.combinations.multi_worker_mirrored_2x1_gpu,
],
mode=['eager']))
class MultiWorkerMirroredStrategyTest(tf.test.TestCase, parameterized.TestCase):
def testFitWithoutStepsPerEpochPartialBatch(self, strategy):
def _model_fn():
x = layers.Input(shape=(1,), name='input')
Reported by Pylint.
Line: 32
Column: 1
tf.__internal__.distribute.combinations.multi_worker_mirrored_2x1_gpu,
],
mode=['eager']))
class MultiWorkerMirroredStrategyTest(tf.test.TestCase, parameterized.TestCase):
def testFitWithoutStepsPerEpochPartialBatch(self, strategy):
def _model_fn():
x = layers.Input(shape=(1,), name='input')
Reported by Pylint.
Line: 34
Column: 3
mode=['eager']))
class MultiWorkerMirroredStrategyTest(tf.test.TestCase, parameterized.TestCase):
def testFitWithoutStepsPerEpochPartialBatch(self, strategy):
def _model_fn():
x = layers.Input(shape=(1,), name='input')
y = layers.Dense(1, name='dense')(x)
model = training.Model(x, y)
Reported by Pylint.
Line: 34
Column: 1
mode=['eager']))
class MultiWorkerMirroredStrategyTest(tf.test.TestCase, parameterized.TestCase):
def testFitWithoutStepsPerEpochPartialBatch(self, strategy):
def _model_fn():
x = layers.Input(shape=(1,), name='input')
y = layers.Dense(1, name='dense')(x)
model = training.Model(x, y)
Reported by Pylint.
Line: 34
Column: 3
mode=['eager']))
class MultiWorkerMirroredStrategyTest(tf.test.TestCase, parameterized.TestCase):
def testFitWithoutStepsPerEpochPartialBatch(self, strategy):
def _model_fn():
x = layers.Input(shape=(1,), name='input')
y = layers.Dense(1, name='dense')(x)
model = training.Model(x, y)
Reported by Pylint.
Line: 36
Column: 1
def testFitWithoutStepsPerEpochPartialBatch(self, strategy):
def _model_fn():
x = layers.Input(shape=(1,), name='input')
y = layers.Dense(1, name='dense')(x)
model = training.Model(x, y)
return model
Reported by Pylint.
Line: 37
Column: 1
def testFitWithoutStepsPerEpochPartialBatch(self, strategy):
def _model_fn():
x = layers.Input(shape=(1,), name='input')
y = layers.Dense(1, name='dense')(x)
model = training.Model(x, y)
return model
def _get_dataset():
Reported by Pylint.
Line: 37
Column: 7
def testFitWithoutStepsPerEpochPartialBatch(self, strategy):
def _model_fn():
x = layers.Input(shape=(1,), name='input')
y = layers.Dense(1, name='dense')(x)
model = training.Model(x, y)
return model
def _get_dataset():
Reported by Pylint.
keras/applications/applications_load_weight_test.py
34 issues
Line: 17
Column: 1
# ==============================================================================
"""Integration tests for Keras applications."""
import tensorflow.compat.v2 as tf
from absl import flags
from absl.testing import parameterized
import numpy as np
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
from absl import flags
from absl.testing import parameterized
import numpy as np
from keras.applications import densenet
from keras.applications import efficientnet
Reported by Pylint.
Line: 20
Column: 1
import tensorflow.compat.v2 as tf
from absl import flags
from absl.testing import parameterized
import numpy as np
from keras.applications import densenet
from keras.applications import efficientnet
from keras.applications import inception_resnet_v2
Reported by Pylint.
Line: 83
Column: 1
# the default is to accept variable-size inputs
# even when loading ImageNet weights (since it is possible).
# In this case, default to 299x299.
if target_size[0] is None:
target_size = (299, 299)
test_image = data_utils.get_file('elephant.jpg', TEST_IMAGE_PATH)
img = image.load_img(test_image, target_size=tuple(target_size))
x = image.img_to_array(img)
return np.expand_dims(x, axis=0)
Reported by Pylint.
Line: 84
Column: 1
# even when loading ImageNet weights (since it is possible).
# In this case, default to 299x299.
if target_size[0] is None:
target_size = (299, 299)
test_image = data_utils.get_file('elephant.jpg', TEST_IMAGE_PATH)
img = image.load_img(test_image, target_size=tuple(target_size))
x = image.img_to_array(img)
return np.expand_dims(x, axis=0)
Reported by Pylint.
Line: 85
Column: 1
# In this case, default to 299x299.
if target_size[0] is None:
target_size = (299, 299)
test_image = data_utils.get_file('elephant.jpg', TEST_IMAGE_PATH)
img = image.load_img(test_image, target_size=tuple(target_size))
x = image.img_to_array(img)
return np.expand_dims(x, axis=0)
Reported by Pylint.
Line: 86
Column: 1
if target_size[0] is None:
target_size = (299, 299)
test_image = data_utils.get_file('elephant.jpg', TEST_IMAGE_PATH)
img = image.load_img(test_image, target_size=tuple(target_size))
x = image.img_to_array(img)
return np.expand_dims(x, axis=0)
class ApplicationsLoadWeightTest(tf.test.TestCase, parameterized.TestCase):
Reported by Pylint.
Line: 87
Column: 1
target_size = (299, 299)
test_image = data_utils.get_file('elephant.jpg', TEST_IMAGE_PATH)
img = image.load_img(test_image, target_size=tuple(target_size))
x = image.img_to_array(img)
return np.expand_dims(x, axis=0)
class ApplicationsLoadWeightTest(tf.test.TestCase, parameterized.TestCase):
Reported by Pylint.
Line: 87
Column: 3
target_size = (299, 299)
test_image = data_utils.get_file('elephant.jpg', TEST_IMAGE_PATH)
img = image.load_img(test_image, target_size=tuple(target_size))
x = image.img_to_array(img)
return np.expand_dims(x, axis=0)
class ApplicationsLoadWeightTest(tf.test.TestCase, parameterized.TestCase):
Reported by Pylint.
Line: 88
Column: 1
test_image = data_utils.get_file('elephant.jpg', TEST_IMAGE_PATH)
img = image.load_img(test_image, target_size=tuple(target_size))
x = image.img_to_array(img)
return np.expand_dims(x, axis=0)
class ApplicationsLoadWeightTest(tf.test.TestCase, parameterized.TestCase):
def assertShapeEqual(self, shape1, shape2):
Reported by Pylint.