The following issues were found
keras/benchmarks/saved_model_benchmarks/saved_model_benchmark_util.py
26 issues
Line: 21
Column: 1
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import tempfile
import time
Reported by Pylint.
Line: 23
Column: 1
import tensorflow as tf
import tempfile
import time
def save_and_load_benchmark(app):
"""Util for saved model benchmarks."""
Reported by Pylint.
Line: 24
Column: 1
import tensorflow as tf
import tempfile
import time
def save_and_load_benchmark(app):
"""Util for saved model benchmarks."""
trials = 3
Reported by Pylint.
Line: 28
Column: 1
def save_and_load_benchmark(app):
"""Util for saved model benchmarks."""
trials = 3
model = app(weights=None)
model_name = app.__name__
Reported by Pylint.
Line: 29
Column: 1
def save_and_load_benchmark(app):
"""Util for saved model benchmarks."""
trials = 3
model = app(weights=None)
model_name = app.__name__
tmp_dir = tf.compat.v1.test.get_temp_dir()
Reported by Pylint.
Line: 31
Column: 1
"""Util for saved model benchmarks."""
trials = 3
model = app(weights=None)
model_name = app.__name__
tmp_dir = tf.compat.v1.test.get_temp_dir()
tf.io.gfile.makedirs(tmp_dir)
save_dir = tempfile.mkdtemp(dir=tmp_dir)
Reported by Pylint.
Line: 32
Column: 1
trials = 3
model = app(weights=None)
model_name = app.__name__
tmp_dir = tf.compat.v1.test.get_temp_dir()
tf.io.gfile.makedirs(tmp_dir)
save_dir = tempfile.mkdtemp(dir=tmp_dir)
Reported by Pylint.
Line: 34
Column: 1
model = app(weights=None)
model_name = app.__name__
tmp_dir = tf.compat.v1.test.get_temp_dir()
tf.io.gfile.makedirs(tmp_dir)
save_dir = tempfile.mkdtemp(dir=tmp_dir)
total_save_time = 0
total_load_time = 0
Reported by Pylint.
Line: 35
Column: 1
model_name = app.__name__
tmp_dir = tf.compat.v1.test.get_temp_dir()
tf.io.gfile.makedirs(tmp_dir)
save_dir = tempfile.mkdtemp(dir=tmp_dir)
total_save_time = 0
total_load_time = 0
Reported by Pylint.
Line: 36
Column: 1
tmp_dir = tf.compat.v1.test.get_temp_dir()
tf.io.gfile.makedirs(tmp_dir)
save_dir = tempfile.mkdtemp(dir=tmp_dir)
total_save_time = 0
total_load_time = 0
# Run one untimed iteration of saving/loading.
Reported by Pylint.
keras/layers/preprocessing/string_lookup.py
26 issues
Line: 17
Column: 1
# ==============================================================================
"""Keras string lookup preprocessing layer."""
import tensorflow.compat.v2 as tf
# pylint: disable=g-classes-have-attributes
import numpy as np
from keras.engine import base_preprocessing_layer
from keras.layers.preprocessing import index_lookup
Reported by Pylint.
Line: 18
Column: 1
"""Keras string lookup preprocessing layer."""
import tensorflow.compat.v2 as tf
# pylint: disable=g-classes-have-attributes
import numpy as np
from keras.engine import base_preprocessing_layer
from keras.layers.preprocessing import index_lookup
from tensorflow.python.util.tf_export import keras_export
Reported by Pylint.
Line: 23
Column: 1
import numpy as np
from keras.engine import base_preprocessing_layer
from keras.layers.preprocessing import index_lookup
from tensorflow.python.util.tf_export import keras_export
@keras_export(
"keras.layers.StringLookup",
"keras.layers.experimental.preprocessing.StringLookup",
Reported by Pylint.
Line: 31
Column: 1
"keras.layers.experimental.preprocessing.StringLookup",
v1=[])
class StringLookup(index_lookup.IndexLookup):
"""Maps strings from a vocabulary to integer indices.
This layer translates a set of arbitrary strings into an integer output via a
table-based vocabulary lookup.
The vocabulary for the layer must be either supplied on construction or
Reported by Pylint.
Line: 291
Column: 1
vocabulary either directly or via `adapt()` before calling `get_vocabulary()`.
"""
def __init__(self,
max_tokens=None,
num_oov_indices=1,
mask_token=None,
oov_token="[UNK]",
vocabulary=None,
Reported by Pylint.
Line: 291
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b107_hardcoded_password_default.html
vocabulary either directly or via `adapt()` before calling `get_vocabulary()`.
"""
def __init__(self,
max_tokens=None,
num_oov_indices=1,
mask_token=None,
oov_token="[UNK]",
vocabulary=None,
Reported by Bandit.
Line: 291
Column: 3
vocabulary either directly or via `adapt()` before calling `get_vocabulary()`.
"""
def __init__(self,
max_tokens=None,
num_oov_indices=1,
mask_token=None,
oov_token="[UNK]",
vocabulary=None,
Reported by Pylint.
Line: 303
Column: 1
sparse=False,
pad_to_max_tokens=False,
**kwargs):
allowed_dtypes = [tf.string]
if "dtype" in kwargs and kwargs["dtype"] not in allowed_dtypes:
raise ValueError(
f"The value of the `dtype` for `StringLookup` may "
f"only be one of {allowed_dtypes}, but received {kwargs['dtype']}.")
Reported by Pylint.
Line: 305
Column: 1
**kwargs):
allowed_dtypes = [tf.string]
if "dtype" in kwargs and kwargs["dtype"] not in allowed_dtypes:
raise ValueError(
f"The value of the `dtype` for `StringLookup` may "
f"only be one of {allowed_dtypes}, but received {kwargs['dtype']}.")
if "dtype" not in kwargs:
Reported by Pylint.
Line: 306
Column: 1
allowed_dtypes = [tf.string]
if "dtype" in kwargs and kwargs["dtype"] not in allowed_dtypes:
raise ValueError(
f"The value of the `dtype` for `StringLookup` may "
f"only be one of {allowed_dtypes}, but received {kwargs['dtype']}.")
if "dtype" not in kwargs:
kwargs["dtype"] = tf.string
Reported by Pylint.
keras/backend_config.py
26 issues
Line: 17
Column: 1
# ==============================================================================
"""Keras backend config API."""
import tensorflow.compat.v2 as tf
from tensorflow.python.util.tf_export import keras_export
# The type of float to use throughout a session.
_FLOATX = 'float32'
Reported by Pylint.
Line: 18
Column: 1
"""Keras backend config API."""
import tensorflow.compat.v2 as tf
from tensorflow.python.util.tf_export import keras_export
# The type of float to use throughout a session.
_FLOATX = 'float32'
# Epsilon fuzz factor used throughout the codebase.
Reported by Pylint.
Line: 60
Column: 3
1e-05
>>> tf.keras.backend.set_epsilon(1e-7)
"""
global _EPSILON
_EPSILON = value
@keras_export('keras.backend.floatx')
def floatx():
Reported by Pylint.
Line: 105
Column: 3
Raises:
ValueError: In case of invalid value.
"""
global _FLOATX
accepted_dtypes = {'float16', 'float32', 'float64'}
if value not in accepted_dtypes:
raise ValueError(
f'Unknown `floatx` value: {value}. Expected one of {accepted_dtypes}')
_FLOATX = str(value)
Reported by Pylint.
Line: 146
Column: 3
Raises:
ValueError: In case of invalid `data_format` value.
"""
global _IMAGE_DATA_FORMAT
accepted_formats = {'channels_last', 'channels_first'}
if data_format not in accepted_formats:
raise ValueError(
f'Unknown `data_format`: {data_format}. '
f'Expected one of {accepted_formats}')
Reported by Pylint.
Line: 33
Column: 1
@keras_export('keras.backend.epsilon')
@tf.__internal__.dispatch.add_dispatch_support
def epsilon():
"""Returns the value of the fuzz factor used in numeric expressions.
Returns:
A float.
Example:
Reported by Pylint.
Line: 42
Column: 1
>>> tf.keras.backend.epsilon()
1e-07
"""
return _EPSILON
@keras_export('keras.backend.set_epsilon')
def set_epsilon(value):
"""Sets the value of the fuzz factor used in numeric expressions.
Reported by Pylint.
Line: 47
Column: 1
@keras_export('keras.backend.set_epsilon')
def set_epsilon(value):
"""Sets the value of the fuzz factor used in numeric expressions.
Args:
value: float. New value of epsilon.
Example:
Reported by Pylint.
Line: 60
Column: 1
1e-05
>>> tf.keras.backend.set_epsilon(1e-7)
"""
global _EPSILON
_EPSILON = value
@keras_export('keras.backend.floatx')
def floatx():
Reported by Pylint.
Line: 61
Column: 1
>>> tf.keras.backend.set_epsilon(1e-7)
"""
global _EPSILON
_EPSILON = value
@keras_export('keras.backend.floatx')
def floatx():
"""Returns the default float type, as a string.
Reported by Pylint.
keras/datasets/boston_housing.py
25 issues
Line: 20
Column: 1
import numpy as np
from keras.utils.data_utils import get_file
from tensorflow.python.util.tf_export import keras_export
@keras_export('keras.datasets.boston_housing.load_data')
def load_data(path='boston_housing.npz', test_split=0.2, seed=113):
"""Loads the Boston Housing dataset.
Reported by Pylint.
Line: 66
Column: 9
x = f['x']
y = f['y']
rng = np.random.RandomState(seed)
indices = np.arange(len(x))
rng.shuffle(indices)
x = x[indices]
y = y[indices]
Reported by Pylint.
Line: 25
Column: 1
@keras_export('keras.datasets.boston_housing.load_data')
def load_data(path='boston_housing.npz', test_split=0.2, seed=113):
"""Loads the Boston Housing dataset.
This is a dataset taken from the StatLib library which is maintained at
Carnegie Mellon University.
Samples contain 13 attributes of houses at different locations around the
Reported by Pylint.
Line: 55
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
target scalars. The targets are float scalars typically between 10 and
50 that represent the home prices in k$.
"""
assert 0 <= test_split < 1
origin_folder = 'https://storage.googleapis.com/tensorflow/tf-keras-datasets/'
path = get_file(
path,
origin=origin_folder + 'boston_housing.npz',
file_hash=
Reported by Bandit.
Line: 55
Column: 1
target scalars. The targets are float scalars typically between 10 and
50 that represent the home prices in k$.
"""
assert 0 <= test_split < 1
origin_folder = 'https://storage.googleapis.com/tensorflow/tf-keras-datasets/'
path = get_file(
path,
origin=origin_folder + 'boston_housing.npz',
file_hash=
Reported by Pylint.
Line: 56
Column: 1
50 that represent the home prices in k$.
"""
assert 0 <= test_split < 1
origin_folder = 'https://storage.googleapis.com/tensorflow/tf-keras-datasets/'
path = get_file(
path,
origin=origin_folder + 'boston_housing.npz',
file_hash=
'f553886a1f8d56431e820c5b82552d9d95cfcb96d1e678153f8839538947dff5')
Reported by Pylint.
Line: 57
Column: 1
"""
assert 0 <= test_split < 1
origin_folder = 'https://storage.googleapis.com/tensorflow/tf-keras-datasets/'
path = get_file(
path,
origin=origin_folder + 'boston_housing.npz',
file_hash=
'f553886a1f8d56431e820c5b82552d9d95cfcb96d1e678153f8839538947dff5')
with np.load(path, allow_pickle=True) as f: # pylint: disable=unexpected-keyword-arg
Reported by Pylint.
Line: 62
Column: 44
origin=origin_folder + 'boston_housing.npz',
file_hash=
'f553886a1f8d56431e820c5b82552d9d95cfcb96d1e678153f8839538947dff5')
with np.load(path, allow_pickle=True) as f: # pylint: disable=unexpected-keyword-arg
x = f['x']
y = f['y']
rng = np.random.RandomState(seed)
indices = np.arange(len(x))
Reported by Pylint.
Line: 62
Column: 1
origin=origin_folder + 'boston_housing.npz',
file_hash=
'f553886a1f8d56431e820c5b82552d9d95cfcb96d1e678153f8839538947dff5')
with np.load(path, allow_pickle=True) as f: # pylint: disable=unexpected-keyword-arg
x = f['x']
y = f['y']
rng = np.random.RandomState(seed)
indices = np.arange(len(x))
Reported by Pylint.
Line: 63
Column: 5
file_hash=
'f553886a1f8d56431e820c5b82552d9d95cfcb96d1e678153f8839538947dff5')
with np.load(path, allow_pickle=True) as f: # pylint: disable=unexpected-keyword-arg
x = f['x']
y = f['y']
rng = np.random.RandomState(seed)
indices = np.arange(len(x))
rng.shuffle(indices)
Reported by Pylint.
keras/distribute/keras_save_load_test.py
25 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for saving and loading using keras save/load APIs with DS."""
import tensorflow.compat.v2 as tf
from keras import testing_utils
from keras.distribute import saved_model_test_base as test_base
from keras.saving import save
Reported by Pylint.
Line: 25
Column: 1
@testing_utils.run_all_without_tensor_float_32(
'Uses Dense layers, which call matmul')
class KerasSaveLoadTest(test_base.TestSavedModelBase):
def setUp(self):
self._root_dir = 'keras_save_load'
super(KerasSaveLoadTest, self).setUp()
Reported by Pylint.
Line: 27
Column: 1
'Uses Dense layers, which call matmul')
class KerasSaveLoadTest(test_base.TestSavedModelBase):
def setUp(self):
self._root_dir = 'keras_save_load'
super(KerasSaveLoadTest, self).setUp()
def _save_model(self, model, saved_dir):
model.save(saved_dir, save_format='tf')
Reported by Pylint.
Line: 28
Column: 1
class KerasSaveLoadTest(test_base.TestSavedModelBase):
def setUp(self):
self._root_dir = 'keras_save_load'
super(KerasSaveLoadTest, self).setUp()
def _save_model(self, model, saved_dir):
model.save(saved_dir, save_format='tf')
Reported by Pylint.
Line: 29
Column: 5
def setUp(self):
self._root_dir = 'keras_save_load'
super(KerasSaveLoadTest, self).setUp()
def _save_model(self, model, saved_dir):
model.save(saved_dir, save_format='tf')
def _load_and_run_model(self,
Reported by Pylint.
Line: 29
Column: 1
def setUp(self):
self._root_dir = 'keras_save_load'
super(KerasSaveLoadTest, self).setUp()
def _save_model(self, model, saved_dir):
model.save(saved_dir, save_format='tf')
def _load_and_run_model(self,
Reported by Pylint.
Line: 31
Column: 1
self._root_dir = 'keras_save_load'
super(KerasSaveLoadTest, self).setUp()
def _save_model(self, model, saved_dir):
model.save(saved_dir, save_format='tf')
def _load_and_run_model(self,
distribution,
saved_dir,
Reported by Pylint.
Line: 32
Column: 1
super(KerasSaveLoadTest, self).setUp()
def _save_model(self, model, saved_dir):
model.save(saved_dir, save_format='tf')
def _load_and_run_model(self,
distribution,
saved_dir,
predict_dataset,
Reported by Pylint.
Line: 34
Column: 1
def _save_model(self, model, saved_dir):
model.save(saved_dir, save_format='tf')
def _load_and_run_model(self,
distribution,
saved_dir,
predict_dataset,
output_name='output_1'):
restored_keras_model = save.load_model(saved_dir)
Reported by Pylint.
Line: 39
Column: 1
saved_dir,
predict_dataset,
output_name='output_1'):
restored_keras_model = save.load_model(saved_dir)
return restored_keras_model.predict(
predict_dataset, steps=test_base.PREDICT_STEPS)
@tf.__internal__.distribute.combinations.generate(test_base.simple_models_with_strategies())
def test_save_no_strategy_restore_strategy(self, model_and_input,
Reported by Pylint.
keras/integration_test/distributed_training_test.py
25 issues
Line: 20
Column: 1
from __future__ import division
from __future__ import print_function
import tensorflow as tf
ds_combinations = tf.__internal__.distribute.combinations
# Note: Strategy combinations are not (yet) public APIs, so they are subject
# to API changes and backward-compatibility is not guaranteed.
# TODO(b/188763034): Proceed to export the strategy combinations as public APIs.
Reported by Pylint.
Line: 25
Column: 3
# Note: Strategy combinations are not (yet) public APIs, so they are subject
# to API changes and backward-compatibility is not guaranteed.
# TODO(b/188763034): Proceed to export the strategy combinations as public APIs.
STRATEGIES = [
ds_combinations.default_strategy,
ds_combinations.mirrored_strategy_with_cpu_1_and_2,
ds_combinations.mirrored_strategy_with_two_gpus,
ds_combinations.tpu_strategy,
Reported by Pylint.
Line: 43
Column: 1
@ds_combinations.generate(
tf.__internal__.test.combinations.combine(
strategy=STRATEGIES, mode="eager"))
class DistributedTrainingTest(tf.test.TestCase):
"""Test to demonstrate basic Keras training with a variety of strategies."""
def testKerasTrainingAPI(self, strategy):
# A `dataset_fn` is required for `Model.fit` to work across all strategies.
Reported by Pylint.
Line: 44
Column: 1
tf.__internal__.test.combinations.combine(
strategy=STRATEGIES, mode="eager"))
class DistributedTrainingTest(tf.test.TestCase):
"""Test to demonstrate basic Keras training with a variety of strategies."""
def testKerasTrainingAPI(self, strategy):
# A `dataset_fn` is required for `Model.fit` to work across all strategies.
def dataset_fn(input_context):
Reported by Pylint.
Line: 46
Column: 3
class DistributedTrainingTest(tf.test.TestCase):
"""Test to demonstrate basic Keras training with a variety of strategies."""
def testKerasTrainingAPI(self, strategy):
# A `dataset_fn` is required for `Model.fit` to work across all strategies.
def dataset_fn(input_context):
batch_size = input_context.get_per_replica_batch_size(
global_batch_size=64)
Reported by Pylint.
Line: 46
Column: 3
class DistributedTrainingTest(tf.test.TestCase):
"""Test to demonstrate basic Keras training with a variety of strategies."""
def testKerasTrainingAPI(self, strategy):
# A `dataset_fn` is required for `Model.fit` to work across all strategies.
def dataset_fn(input_context):
batch_size = input_context.get_per_replica_batch_size(
global_batch_size=64)
Reported by Pylint.
Line: 46
Column: 3
class DistributedTrainingTest(tf.test.TestCase):
"""Test to demonstrate basic Keras training with a variety of strategies."""
def testKerasTrainingAPI(self, strategy):
# A `dataset_fn` is required for `Model.fit` to work across all strategies.
def dataset_fn(input_context):
batch_size = input_context.get_per_replica_batch_size(
global_batch_size=64)
Reported by Pylint.
Line: 46
Column: 1
class DistributedTrainingTest(tf.test.TestCase):
"""Test to demonstrate basic Keras training with a variety of strategies."""
def testKerasTrainingAPI(self, strategy):
# A `dataset_fn` is required for `Model.fit` to work across all strategies.
def dataset_fn(input_context):
batch_size = input_context.get_per_replica_batch_size(
global_batch_size=64)
Reported by Pylint.
Line: 49
Column: 1
def testKerasTrainingAPI(self, strategy):
# A `dataset_fn` is required for `Model.fit` to work across all strategies.
def dataset_fn(input_context):
batch_size = input_context.get_per_replica_batch_size(
global_batch_size=64)
x = tf.random.uniform((10, 10))
y = tf.random.uniform((10,))
dataset = tf.data.Dataset.from_tensor_slices((x, y)).shuffle(10).repeat()
Reported by Pylint.
Line: 50
Column: 1
# A `dataset_fn` is required for `Model.fit` to work across all strategies.
def dataset_fn(input_context):
batch_size = input_context.get_per_replica_batch_size(
global_batch_size=64)
x = tf.random.uniform((10, 10))
y = tf.random.uniform((10,))
dataset = tf.data.Dataset.from_tensor_slices((x, y)).shuffle(10).repeat()
dataset = dataset.shard(
Reported by Pylint.
keras/legacy_tf_layers/normalization.py
24 issues
Line: 15
Column: 1
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
# pylint: disable=g-classes-have-attributes
"""Contains the normalization layer classes and their functional aliases."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
Reported by Pylint.
Line: 21
Column: 1
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v2 as tf
import warnings
from keras.layers.normalization import batch_normalization_v1
from keras.legacy_tf_layers import base
Reported by Pylint.
Line: 27
Column: 1
from keras.layers.normalization import batch_normalization_v1
from keras.legacy_tf_layers import base
from tensorflow.python.util.tf_export import keras_export
from tensorflow.python.util.tf_export import tf_export
@keras_export(v1=['keras.__internal__.legacy.layers.BatchNormalization'])
@tf_export(v1=['layers.BatchNormalization'])
Reported by Pylint.
Line: 28
Column: 1
from keras.layers.normalization import batch_normalization_v1
from keras.legacy_tf_layers import base
from tensorflow.python.util.tf_export import keras_export
from tensorflow.python.util.tf_export import tf_export
@keras_export(v1=['keras.__internal__.legacy.layers.BatchNormalization'])
@tf_export(v1=['layers.BatchNormalization'])
class BatchNormalization(batch_normalization_v1.BatchNormalization, base.Layer):
Reported by Pylint.
Line: 23
Column: 1
import tensorflow.compat.v2 as tf
import warnings
from keras.layers.normalization import batch_normalization_v1
from keras.legacy_tf_layers import base
from tensorflow.python.util.tf_export import keras_export
from tensorflow.python.util.tf_export import tf_export
Reported by Pylint.
Line: 34
Column: 1
@keras_export(v1=['keras.__internal__.legacy.layers.BatchNormalization'])
@tf_export(v1=['layers.BatchNormalization'])
class BatchNormalization(batch_normalization_v1.BatchNormalization, base.Layer):
"""Batch Normalization layer from (Ioffe et al., 2015).
Keras APIs handle BatchNormalization updates to the moving_mean and
moving_variance as part of their `fit()` and `evaluate()` loops. However, if a
custom training loop is used with an instance of `Model`, these updates need
to be explicitly included. Here's a simple example of how it can be done:
Reported by Pylint.
Line: 122
Column: 1
Batch Renormalization - Towards Reducing Minibatch Dependence in
Batch-Normalized Models:
[Ioffe,
2017](http://papers.nips.cc/paper/6790-batch-renormalization-towards-reducing-minibatch-dependence-in-batch-normalized-models)
([pdf](http://papers.nips.cc/paper/6790-batch-renormalization-towards-reducing-minibatch-dependence-in-batch-normalized-models.pdf))
@compatibility(TF2)
This API is not compatible with eager execution or `tf.function`.
Reported by Pylint.
Line: 123
Column: 1
Batch-Normalized Models:
[Ioffe,
2017](http://papers.nips.cc/paper/6790-batch-renormalization-towards-reducing-minibatch-dependence-in-batch-normalized-models)
([pdf](http://papers.nips.cc/paper/6790-batch-renormalization-towards-reducing-minibatch-dependence-in-batch-normalized-models.pdf))
@compatibility(TF2)
This API is not compatible with eager execution or `tf.function`.
Reported by Pylint.
Line: 179
Column: 1
@end_compatibility
"""
def __init__(self,
axis=-1,
momentum=0.99,
epsilon=1e-3,
center=True,
scale=True,
Reported by Pylint.
Line: 179
Column: 3
@end_compatibility
"""
def __init__(self,
axis=-1,
momentum=0.99,
epsilon=1e-3,
center=True,
scale=True,
Reported by Pylint.
keras/estimator/__init__.py
24 issues
Line: 17
Column: 1
# ==============================================================================
"""Keras estimator API."""
import tensorflow.compat.v2 as tf
from tensorflow.python.util.tf_export import keras_export
# Keras has undeclared dependency on tensorflow/estimator:estimator_py.
# As long as you depend //third_party/py/tensorflow:tensorflow target
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
from tensorflow.python.util.tf_export import keras_export
# Keras has undeclared dependency on tensorflow/estimator:estimator_py.
# As long as you depend //third_party/py/tensorflow:tensorflow target
# everything will work as normal.
Reported by Pylint.
Line: 163
Column: 1
"""
try:
from tensorflow_estimator.python.estimator import keras_lib # pylint: disable=g-import-not-at-top
except ImportError:
raise NotImplementedError(
'tf.keras.estimator.model_to_estimator function not available in your '
'installation.')
_model_to_estimator_usage_gauge.get_cell('v1').set(True)
Reported by Pylint.
Line: 351
Column: 1
"""
try:
from tensorflow_estimator.python.estimator import keras_lib # pylint: disable=g-import-not-at-top
except ImportError:
raise NotImplementedError(
'tf.keras.estimator.model_to_estimator function not available in your '
'installation.')
_model_to_estimator_usage_gauge.get_cell('v2').set(True)
Reported by Pylint.
Line: 165
Column: 5
try:
from tensorflow_estimator.python.estimator import keras_lib # pylint: disable=g-import-not-at-top
except ImportError:
raise NotImplementedError(
'tf.keras.estimator.model_to_estimator function not available in your '
'installation.')
_model_to_estimator_usage_gauge.get_cell('v1').set(True)
return keras_lib.model_to_estimator( # pylint:disable=unexpected-keyword-arg
keras_model=keras_model,
Reported by Pylint.
Line: 353
Column: 5
try:
from tensorflow_estimator.python.estimator import keras_lib # pylint: disable=g-import-not-at-top
except ImportError:
raise NotImplementedError(
'tf.keras.estimator.model_to_estimator function not available in your '
'installation.')
_model_to_estimator_usage_gauge.get_cell('v2').set(True)
return keras_lib.model_to_estimator( # pylint:disable=unexpected-keyword-arg
keras_model=keras_model,
Reported by Pylint.
Line: 32
Column: 1
# LINT.IfChange
@keras_export(v1=['keras.estimator.model_to_estimator'])
def model_to_estimator(
keras_model=None,
keras_model_path=None,
custom_objects=None,
model_dir=None,
config=None,
Reported by Pylint.
Line: 41
Column: 1
checkpoint_format='saver',
metric_names_map=None,
export_outputs=None):
"""Constructs an `Estimator` instance from given keras model.
If you use infrastructure or other tooling that relies on Estimators, you can
still build a Keras model and use model_to_estimator to convert the Keras
model to an Estimator for use with downstream systems.
Reported by Pylint.
Line: 162
Column: 1
ValueError: If an invalid checkpoint_format was given.
"""
try:
from tensorflow_estimator.python.estimator import keras_lib # pylint: disable=g-import-not-at-top
except ImportError:
raise NotImplementedError(
'tf.keras.estimator.model_to_estimator function not available in your '
'installation.')
Reported by Pylint.
Line: 163
Column: 5
"""
try:
from tensorflow_estimator.python.estimator import keras_lib # pylint: disable=g-import-not-at-top
except ImportError:
raise NotImplementedError(
'tf.keras.estimator.model_to_estimator function not available in your '
'installation.')
_model_to_estimator_usage_gauge.get_cell('v1').set(True)
Reported by Pylint.
keras/distribute/saved_model_mixed_api_test.py
24 issues
Line: 23
Column: 1
tf.saved_model.save().
"""
import tensorflow.compat.v2 as tf
from keras import testing_utils
from keras.distribute import saved_model_test_base as test_base
from keras.saving import save
_DEFAULT_FUNCTION_KEY = 'serving_default'
Reported by Pylint.
Line: 33
Column: 1
@testing_utils.run_all_without_tensor_float_32(
'Uses Dense layers, which call matmul')
class SavedModelSaveAndLoadTest(test_base.TestSavedModelBase):
def setUp(self):
self._root_dir = 'saved_model_save_load'
super(SavedModelSaveAndLoadTest, self).setUp()
Reported by Pylint.
Line: 35
Column: 1
'Uses Dense layers, which call matmul')
class SavedModelSaveAndLoadTest(test_base.TestSavedModelBase):
def setUp(self):
self._root_dir = 'saved_model_save_load'
super(SavedModelSaveAndLoadTest, self).setUp()
def _save_model(self, model, saved_dir):
save.save_model(model, saved_dir, save_format='tf')
Reported by Pylint.
Line: 36
Column: 1
class SavedModelSaveAndLoadTest(test_base.TestSavedModelBase):
def setUp(self):
self._root_dir = 'saved_model_save_load'
super(SavedModelSaveAndLoadTest, self).setUp()
def _save_model(self, model, saved_dir):
save.save_model(model, saved_dir, save_format='tf')
Reported by Pylint.
Line: 37
Column: 5
def setUp(self):
self._root_dir = 'saved_model_save_load'
super(SavedModelSaveAndLoadTest, self).setUp()
def _save_model(self, model, saved_dir):
save.save_model(model, saved_dir, save_format='tf')
def _load_and_run_model(self,
Reported by Pylint.
Line: 37
Column: 1
def setUp(self):
self._root_dir = 'saved_model_save_load'
super(SavedModelSaveAndLoadTest, self).setUp()
def _save_model(self, model, saved_dir):
save.save_model(model, saved_dir, save_format='tf')
def _load_and_run_model(self,
Reported by Pylint.
Line: 39
Column: 1
self._root_dir = 'saved_model_save_load'
super(SavedModelSaveAndLoadTest, self).setUp()
def _save_model(self, model, saved_dir):
save.save_model(model, saved_dir, save_format='tf')
def _load_and_run_model(self,
distribution,
saved_dir,
Reported by Pylint.
Line: 40
Column: 1
super(SavedModelSaveAndLoadTest, self).setUp()
def _save_model(self, model, saved_dir):
save.save_model(model, saved_dir, save_format='tf')
def _load_and_run_model(self,
distribution,
saved_dir,
predict_dataset,
Reported by Pylint.
Line: 42
Column: 1
def _save_model(self, model, saved_dir):
save.save_model(model, saved_dir, save_format='tf')
def _load_and_run_model(self,
distribution,
saved_dir,
predict_dataset,
output_name='output_1'):
return test_base.load_and_run_with_saved_model_api(distribution, saved_dir,
Reported by Pylint.
Line: 47
Column: 1
saved_dir,
predict_dataset,
output_name='output_1'):
return test_base.load_and_run_with_saved_model_api(distribution, saved_dir,
predict_dataset,
output_name)
@tf.__internal__.distribute.combinations.generate(test_base.simple_models_with_strategies())
def test_save_no_strategy_restore_strategy(self, model_and_input,
Reported by Pylint.
keras/layers/core/repeat_vector.py
24 issues
Line: 16
Column: 1
# limitations under the License.
# ==============================================================================
"""Contains the RepeatVector layer."""
# pylint: disable=g-classes-have-attributes,g-direct-tensorflow-import
from keras import backend as K
from keras.engine.base_layer import Layer
from keras.engine.input_spec import InputSpec
import tensorflow.compat.v2 as tf
Reported by Pylint.
Line: 16
Column: 1
# limitations under the License.
# ==============================================================================
"""Contains the RepeatVector layer."""
# pylint: disable=g-classes-have-attributes,g-direct-tensorflow-import
from keras import backend as K
from keras.engine.base_layer import Layer
from keras.engine.input_spec import InputSpec
import tensorflow.compat.v2 as tf
Reported by Pylint.
Line: 21
Column: 1
from keras import backend as K
from keras.engine.base_layer import Layer
from keras.engine.input_spec import InputSpec
import tensorflow.compat.v2 as tf
from tensorflow.python.util.tf_export import keras_export
@keras_export('keras.layers.RepeatVector')
Reported by Pylint.
Line: 23
Column: 1
from keras.engine.input_spec import InputSpec
import tensorflow.compat.v2 as tf
from tensorflow.python.util.tf_export import keras_export
@keras_export('keras.layers.RepeatVector')
class RepeatVector(Layer):
"""Repeats the input n times.
Reported by Pylint.
Line: 59
Column: 3
input_shape = tf.TensorShape(input_shape).as_list()
return tf.TensorShape([input_shape[0], self.n, input_shape[1]])
def call(self, inputs):
return K.repeat(inputs, self.n)
def get_config(self):
config = {'n': self.n}
base_config = super(RepeatVector, self).get_config()
Reported by Pylint.
Line: 28
Column: 1
@keras_export('keras.layers.RepeatVector')
class RepeatVector(Layer):
"""Repeats the input n times.
Example:
```python
model = Sequential()
Reported by Pylint.
Line: 48
Column: 1
Output shape: 3D tensor of shape `(num_samples, n, features)`.
"""
def __init__(self, n, **kwargs):
super(RepeatVector, self).__init__(**kwargs)
self.n = n
if not isinstance(n, int):
raise TypeError(f'Expected an integer value for `n`, got {type(n)}.')
self.input_spec = InputSpec(ndim=2)
Reported by Pylint.
Line: 49
Column: 5
"""
def __init__(self, n, **kwargs):
super(RepeatVector, self).__init__(**kwargs)
self.n = n
if not isinstance(n, int):
raise TypeError(f'Expected an integer value for `n`, got {type(n)}.')
self.input_spec = InputSpec(ndim=2)
Reported by Pylint.
Line: 49
Column: 1
"""
def __init__(self, n, **kwargs):
super(RepeatVector, self).__init__(**kwargs)
self.n = n
if not isinstance(n, int):
raise TypeError(f'Expected an integer value for `n`, got {type(n)}.')
self.input_spec = InputSpec(ndim=2)
Reported by Pylint.
Line: 50
Column: 1
def __init__(self, n, **kwargs):
super(RepeatVector, self).__init__(**kwargs)
self.n = n
if not isinstance(n, int):
raise TypeError(f'Expected an integer value for `n`, got {type(n)}.')
self.input_spec = InputSpec(ndim=2)
def compute_output_shape(self, input_shape):
Reported by Pylint.