The following issues were found
keras/benchmarks/optimizer_benchmarks_test.py
29 issues
Line: 17
Column: 1
# ==============================================================================
"""Benchmark tests for Keras optimizers."""
import tensorflow as tf
from keras.benchmarks import benchmark_util
from keras.optimizer_v2 import adam
from tensorflow.python.platform.benchmark import ParameterizedBenchmark
Reported by Pylint.
Line: 21
Column: 1
from keras.benchmarks import benchmark_util
from keras.optimizer_v2 import adam
from tensorflow.python.platform.benchmark import ParameterizedBenchmark
def bidirect_imdb_lstm_config():
"""Bidirectional LSTM model and IMDB data."""
Reported by Pylint.
Line: 25
Column: 1
def bidirect_imdb_lstm_config():
"""Bidirectional LSTM model and IMDB data."""
def model_fn():
inputs = tf.keras.Input(shape=(None,), dtype="int32")
x = tf.keras.layers.Embedding(20000, 128)(inputs)
x = tf.keras.layers.Bidirectional(
Reported by Pylint.
Line: 27
Column: 1
def bidirect_imdb_lstm_config():
"""Bidirectional LSTM model and IMDB data."""
def model_fn():
inputs = tf.keras.Input(shape=(None,), dtype="int32")
x = tf.keras.layers.Embedding(20000, 128)(inputs)
x = tf.keras.layers.Bidirectional(
tf.keras.layers.LSTM(64, return_sequences=True))(
x)
Reported by Pylint.
Line: 28
Column: 1
"""Bidirectional LSTM model and IMDB data."""
def model_fn():
inputs = tf.keras.Input(shape=(None,), dtype="int32")
x = tf.keras.layers.Embedding(20000, 128)(inputs)
x = tf.keras.layers.Bidirectional(
tf.keras.layers.LSTM(64, return_sequences=True))(
x)
x = tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64))(x)
Reported by Pylint.
Line: 29
Column: 5
def model_fn():
inputs = tf.keras.Input(shape=(None,), dtype="int32")
x = tf.keras.layers.Embedding(20000, 128)(inputs)
x = tf.keras.layers.Bidirectional(
tf.keras.layers.LSTM(64, return_sequences=True))(
x)
x = tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64))(x)
outputs = tf.keras.layers.Dense(1, activation="sigmoid")(x)
Reported by Pylint.
Line: 29
Column: 1
def model_fn():
inputs = tf.keras.Input(shape=(None,), dtype="int32")
x = tf.keras.layers.Embedding(20000, 128)(inputs)
x = tf.keras.layers.Bidirectional(
tf.keras.layers.LSTM(64, return_sequences=True))(
x)
x = tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64))(x)
outputs = tf.keras.layers.Dense(1, activation="sigmoid")(x)
Reported by Pylint.
Line: 30
Column: 5
def model_fn():
inputs = tf.keras.Input(shape=(None,), dtype="int32")
x = tf.keras.layers.Embedding(20000, 128)(inputs)
x = tf.keras.layers.Bidirectional(
tf.keras.layers.LSTM(64, return_sequences=True))(
x)
x = tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64))(x)
outputs = tf.keras.layers.Dense(1, activation="sigmoid")(x)
model = tf.keras.Model(inputs, outputs)
Reported by Pylint.
Line: 30
Column: 1
def model_fn():
inputs = tf.keras.Input(shape=(None,), dtype="int32")
x = tf.keras.layers.Embedding(20000, 128)(inputs)
x = tf.keras.layers.Bidirectional(
tf.keras.layers.LSTM(64, return_sequences=True))(
x)
x = tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64))(x)
outputs = tf.keras.layers.Dense(1, activation="sigmoid")(x)
model = tf.keras.Model(inputs, outputs)
Reported by Pylint.
Line: 33
Column: 1
x = tf.keras.layers.Bidirectional(
tf.keras.layers.LSTM(64, return_sequences=True))(
x)
x = tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64))(x)
outputs = tf.keras.layers.Dense(1, activation="sigmoid")(x)
model = tf.keras.Model(inputs, outputs)
return model
(x_train, y_train), _ = tf.keras.datasets.imdb.load_data(num_words=20000)
Reported by Pylint.
keras/layers/preprocessing/category_crossing_distribution_test.py
29 issues
Line: 17
Column: 1
# ==============================================================================
"""Distribution tests for keras.layers.preprocessing.category_crossing."""
import tensorflow.compat.v2 as tf
import numpy as np
import keras
from keras import keras_parameterized
Reported by Pylint.
Line: 28
Column: 1
from keras.layers.preprocessing import preprocessing_test_utils
def batch_wrapper(dataset, batch_size, distribution, repeat=None):
if repeat:
dataset = dataset.repeat(repeat)
# TPUs currently require fully defined input shapes, drop_remainder ensures
# the input will have fully defined shapes.
if isinstance(distribution,
Reported by Pylint.
Line: 29
Column: 1
def batch_wrapper(dataset, batch_size, distribution, repeat=None):
if repeat:
dataset = dataset.repeat(repeat)
# TPUs currently require fully defined input shapes, drop_remainder ensures
# the input will have fully defined shapes.
if isinstance(distribution,
(tf.distribute.experimental.TPUStrategy, tf.compat.v1.distribute.experimental.TPUStrategy)):
Reported by Pylint.
Line: 30
Column: 1
def batch_wrapper(dataset, batch_size, distribution, repeat=None):
if repeat:
dataset = dataset.repeat(repeat)
# TPUs currently require fully defined input shapes, drop_remainder ensures
# the input will have fully defined shapes.
if isinstance(distribution,
(tf.distribute.experimental.TPUStrategy, tf.compat.v1.distribute.experimental.TPUStrategy)):
return dataset.batch(batch_size, drop_remainder=True)
Reported by Pylint.
Line: 33
Column: 3
dataset = dataset.repeat(repeat)
# TPUs currently require fully defined input shapes, drop_remainder ensures
# the input will have fully defined shapes.
if isinstance(distribution,
(tf.distribute.experimental.TPUStrategy, tf.compat.v1.distribute.experimental.TPUStrategy)):
return dataset.batch(batch_size, drop_remainder=True)
else:
return dataset.batch(batch_size)
Reported by Pylint.
Line: 33
Column: 1
dataset = dataset.repeat(repeat)
# TPUs currently require fully defined input shapes, drop_remainder ensures
# the input will have fully defined shapes.
if isinstance(distribution,
(tf.distribute.experimental.TPUStrategy, tf.compat.v1.distribute.experimental.TPUStrategy)):
return dataset.batch(batch_size, drop_remainder=True)
else:
return dataset.batch(batch_size)
Reported by Pylint.
Line: 34
Column: 1
# TPUs currently require fully defined input shapes, drop_remainder ensures
# the input will have fully defined shapes.
if isinstance(distribution,
(tf.distribute.experimental.TPUStrategy, tf.compat.v1.distribute.experimental.TPUStrategy)):
return dataset.batch(batch_size, drop_remainder=True)
else:
return dataset.batch(batch_size)
Reported by Pylint.
Line: 35
Column: 1
# the input will have fully defined shapes.
if isinstance(distribution,
(tf.distribute.experimental.TPUStrategy, tf.compat.v1.distribute.experimental.TPUStrategy)):
return dataset.batch(batch_size, drop_remainder=True)
else:
return dataset.batch(batch_size)
@tf.__internal__.distribute.combinations.generate(
Reported by Pylint.
Line: 36
Column: 1
if isinstance(distribution,
(tf.distribute.experimental.TPUStrategy, tf.compat.v1.distribute.experimental.TPUStrategy)):
return dataset.batch(batch_size, drop_remainder=True)
else:
return dataset.batch(batch_size)
@tf.__internal__.distribute.combinations.generate(
tf.__internal__.test.combinations.combine(
Reported by Pylint.
Line: 37
Column: 1
(tf.distribute.experimental.TPUStrategy, tf.compat.v1.distribute.experimental.TPUStrategy)):
return dataset.batch(batch_size, drop_remainder=True)
else:
return dataset.batch(batch_size)
@tf.__internal__.distribute.combinations.generate(
tf.__internal__.test.combinations.combine(
# Investigate why crossing is not supported with TPU.
Reported by Pylint.
keras/applications/resnet_v2.py
29 issues
Line: 25
Column: 1
from keras.applications import imagenet_utils
from keras.applications import resnet
from tensorflow.python.util.tf_export import keras_export
@keras_export('keras.applications.resnet_v2.ResNet50V2',
'keras.applications.ResNet50V2')
def ResNet50V2(
Reported by Pylint.
Line: 30
Column: 1
@keras_export('keras.applications.resnet_v2.ResNet50V2',
'keras.applications.ResNet50V2')
def ResNet50V2(
include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
Reported by Pylint.
Line: 38
Column: 1
pooling=None,
classes=1000,
classifier_activation='softmax'):
"""Instantiates the ResNet50V2 architecture."""
def stack_fn(x):
x = resnet.stack2(x, 64, 3, name='conv2')
x = resnet.stack2(x, 128, 4, name='conv3')
x = resnet.stack2(x, 256, 6, name='conv4')
return resnet.stack2(x, 512, 3, stride1=1, name='conv5')
Reported by Pylint.
Line: 39
Column: 1
classes=1000,
classifier_activation='softmax'):
"""Instantiates the ResNet50V2 architecture."""
def stack_fn(x):
x = resnet.stack2(x, 64, 3, name='conv2')
x = resnet.stack2(x, 128, 4, name='conv3')
x = resnet.stack2(x, 256, 6, name='conv4')
return resnet.stack2(x, 512, 3, stride1=1, name='conv5')
Reported by Pylint.
Line: 40
Column: 1
classifier_activation='softmax'):
"""Instantiates the ResNet50V2 architecture."""
def stack_fn(x):
x = resnet.stack2(x, 64, 3, name='conv2')
x = resnet.stack2(x, 128, 4, name='conv3')
x = resnet.stack2(x, 256, 6, name='conv4')
return resnet.stack2(x, 512, 3, stride1=1, name='conv5')
return resnet.ResNet(
Reported by Pylint.
Line: 41
Column: 1
"""Instantiates the ResNet50V2 architecture."""
def stack_fn(x):
x = resnet.stack2(x, 64, 3, name='conv2')
x = resnet.stack2(x, 128, 4, name='conv3')
x = resnet.stack2(x, 256, 6, name='conv4')
return resnet.stack2(x, 512, 3, stride1=1, name='conv5')
return resnet.ResNet(
stack_fn,
Reported by Pylint.
Line: 42
Column: 1
def stack_fn(x):
x = resnet.stack2(x, 64, 3, name='conv2')
x = resnet.stack2(x, 128, 4, name='conv3')
x = resnet.stack2(x, 256, 6, name='conv4')
return resnet.stack2(x, 512, 3, stride1=1, name='conv5')
return resnet.ResNet(
stack_fn,
True,
Reported by Pylint.
Line: 43
Column: 1
x = resnet.stack2(x, 64, 3, name='conv2')
x = resnet.stack2(x, 128, 4, name='conv3')
x = resnet.stack2(x, 256, 6, name='conv4')
return resnet.stack2(x, 512, 3, stride1=1, name='conv5')
return resnet.ResNet(
stack_fn,
True,
True,
Reported by Pylint.
Line: 45
Column: 1
x = resnet.stack2(x, 256, 6, name='conv4')
return resnet.stack2(x, 512, 3, stride1=1, name='conv5')
return resnet.ResNet(
stack_fn,
True,
True,
'resnet50v2',
include_top,
Reported by Pylint.
Line: 61
Column: 1
@keras_export('keras.applications.resnet_v2.ResNet101V2',
'keras.applications.ResNet101V2')
def ResNet101V2(
include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
Reported by Pylint.
keras/benchmarks/model_memory_profile.py
28 issues
Line: 23
Column: 1
3. Add the model function to the dict `models`.
"""
import tensorflow as tf
from absl import app
from absl import flags
from absl import logging
Reported by Pylint.
Line: 25
Column: 1
import tensorflow as tf
from absl import app
from absl import flags
from absl import logging
import numpy as np
Reported by Pylint.
Line: 26
Column: 1
import tensorflow as tf
from absl import app
from absl import flags
from absl import logging
import numpy as np
try:
Reported by Pylint.
Line: 28
Column: 1
from absl import app
from absl import flags
from absl import logging
import numpy as np
try:
import memory_profiler # pylint:disable=g-import-not-at-top
except ImportError:
Reported by Pylint.
Line: 32
Column: 1
import numpy as np
try:
import memory_profiler # pylint:disable=g-import-not-at-top
except ImportError:
memory_profiler = None
FLAGS = flags.FLAGS
Reported by Pylint.
Line: 32
Column: 1
import numpy as np
try:
import memory_profiler # pylint:disable=g-import-not-at-top
except ImportError:
memory_profiler = None
FLAGS = flags.FLAGS
Reported by Pylint.
Line: 34
Column: 1
try:
import memory_profiler # pylint:disable=g-import-not-at-top
except ImportError:
memory_profiler = None
FLAGS = flags.FLAGS
flags.DEFINE_string('model', None,
'The model to run memory profiler.')
Reported by Pylint.
Line: 44
Column: 1
@memory_profiler.profile
def _imdb_lstm_model():
"""LSTM model."""
x_train = np.random.randint(0, 1999, size=(2500, 100))
y_train = np.random.random((2500, 1))
# IMDB LSTM model.
model = tf.keras.Sequential()
Reported by Pylint.
Line: 45
Column: 1
@memory_profiler.profile
def _imdb_lstm_model():
"""LSTM model."""
x_train = np.random.randint(0, 1999, size=(2500, 100))
y_train = np.random.random((2500, 1))
# IMDB LSTM model.
model = tf.keras.Sequential()
model.add(tf.keras.layers.Embedding(20000, 128))
Reported by Pylint.
Line: 46
Column: 1
def _imdb_lstm_model():
"""LSTM model."""
x_train = np.random.randint(0, 1999, size=(2500, 100))
y_train = np.random.random((2500, 1))
# IMDB LSTM model.
model = tf.keras.Sequential()
model.add(tf.keras.layers.Embedding(20000, 128))
model.add(tf.keras.layers.LSTM(128, dropout=0.2, recurrent_dropout=0.2))
Reported by Pylint.
keras/layers/preprocessing/category_encoding_distribution_test.py
28 issues
Line: 17
Column: 1
# ==============================================================================
"""Distribution tests for keras.layers.preprocessing.category_encoding."""
import tensorflow.compat.v2 as tf
import numpy as np
import keras
from keras import keras_parameterized
Reported by Pylint.
Line: 28
Column: 1
from keras.layers.preprocessing import preprocessing_test_utils
def batch_wrapper(dataset, batch_size, strategy, repeat=None):
if repeat:
dataset = dataset.repeat(repeat)
# TPUs currently require fully defined input shapes, drop_remainder ensures
# the input will have fully defined shapes.
if isinstance(strategy,
Reported by Pylint.
Line: 29
Column: 1
def batch_wrapper(dataset, batch_size, strategy, repeat=None):
if repeat:
dataset = dataset.repeat(repeat)
# TPUs currently require fully defined input shapes, drop_remainder ensures
# the input will have fully defined shapes.
if isinstance(strategy,
(tf.distribute.experimental.TPUStrategy, tf.compat.v1.distribute.experimental.TPUStrategy)):
Reported by Pylint.
Line: 30
Column: 1
def batch_wrapper(dataset, batch_size, strategy, repeat=None):
if repeat:
dataset = dataset.repeat(repeat)
# TPUs currently require fully defined input shapes, drop_remainder ensures
# the input will have fully defined shapes.
if isinstance(strategy,
(tf.distribute.experimental.TPUStrategy, tf.compat.v1.distribute.experimental.TPUStrategy)):
return dataset.batch(batch_size, drop_remainder=True)
Reported by Pylint.
Line: 33
Column: 1
dataset = dataset.repeat(repeat)
# TPUs currently require fully defined input shapes, drop_remainder ensures
# the input will have fully defined shapes.
if isinstance(strategy,
(tf.distribute.experimental.TPUStrategy, tf.compat.v1.distribute.experimental.TPUStrategy)):
return dataset.batch(batch_size, drop_remainder=True)
else:
return dataset.batch(batch_size)
Reported by Pylint.
Line: 33
Column: 3
dataset = dataset.repeat(repeat)
# TPUs currently require fully defined input shapes, drop_remainder ensures
# the input will have fully defined shapes.
if isinstance(strategy,
(tf.distribute.experimental.TPUStrategy, tf.compat.v1.distribute.experimental.TPUStrategy)):
return dataset.batch(batch_size, drop_remainder=True)
else:
return dataset.batch(batch_size)
Reported by Pylint.
Line: 34
Column: 1
# TPUs currently require fully defined input shapes, drop_remainder ensures
# the input will have fully defined shapes.
if isinstance(strategy,
(tf.distribute.experimental.TPUStrategy, tf.compat.v1.distribute.experimental.TPUStrategy)):
return dataset.batch(batch_size, drop_remainder=True)
else:
return dataset.batch(batch_size)
Reported by Pylint.
Line: 35
Column: 1
# the input will have fully defined shapes.
if isinstance(strategy,
(tf.distribute.experimental.TPUStrategy, tf.compat.v1.distribute.experimental.TPUStrategy)):
return dataset.batch(batch_size, drop_remainder=True)
else:
return dataset.batch(batch_size)
@tf.__internal__.distribute.combinations.generate(
Reported by Pylint.
Line: 36
Column: 1
if isinstance(strategy,
(tf.distribute.experimental.TPUStrategy, tf.compat.v1.distribute.experimental.TPUStrategy)):
return dataset.batch(batch_size, drop_remainder=True)
else:
return dataset.batch(batch_size)
@tf.__internal__.distribute.combinations.generate(
tf.__internal__.test.combinations.combine(
Reported by Pylint.
Line: 37
Column: 1
(tf.distribute.experimental.TPUStrategy, tf.compat.v1.distribute.experimental.TPUStrategy)):
return dataset.batch(batch_size, drop_remainder=True)
else:
return dataset.batch(batch_size)
@tf.__internal__.distribute.combinations.generate(
tf.__internal__.test.combinations.combine(
# (b/156783625): Outside compilation failed for eager mode only.
Reported by Pylint.
keras/saving/saved_model/determinism_test.py
28 issues
Line: 5
Column: 1
import subprocess
from absl import flags
import tensorflow.compat.v2 as tf
# pylint: disable=g-direct-tensorflow-import
from tensorflow.core.protobuf import saved_model_pb2
# pylint: enable=g-direct-tensorflow-import
Reported by Pylint.
Line: 6
Column: 1
import subprocess
from absl import flags
import tensorflow.compat.v2 as tf
# pylint: disable=g-direct-tensorflow-import
from tensorflow.core.protobuf import saved_model_pb2
# pylint: enable=g-direct-tensorflow-import
Reported by Pylint.
Line: 8
Column: 1
from absl import flags
import tensorflow.compat.v2 as tf
# pylint: disable=g-direct-tensorflow-import
from tensorflow.core.protobuf import saved_model_pb2
# pylint: enable=g-direct-tensorflow-import
FLAGS = flags.FLAGS
Reported by Pylint.
Line: 9
Column: 1
import tensorflow.compat.v2 as tf
# pylint: disable=g-direct-tensorflow-import
from tensorflow.core.protobuf import saved_model_pb2
# pylint: enable=g-direct-tensorflow-import
FLAGS = flags.FLAGS
Reported by Pylint.
Line: 10
Column: 1
# pylint: disable=g-direct-tensorflow-import
from tensorflow.core.protobuf import saved_model_pb2
# pylint: enable=g-direct-tensorflow-import
FLAGS = flags.FLAGS
class DeterminismTest(tf.test.TestCase):
Reported by Pylint.
Line: 3
Suggestion:
https://bandit.readthedocs.io/en/latest/blacklists/blacklist_imports.html#b404-import-subprocess
"""Saves the same model twice and ensures that they are serialized the same."""
import subprocess
from absl import flags
import tensorflow.compat.v2 as tf
# pylint: disable=g-direct-tensorflow-import
from tensorflow.core.protobuf import saved_model_pb2
Reported by Bandit.
Line: 15
Column: 1
FLAGS = flags.FLAGS
class DeterminismTest(tf.test.TestCase):
def test_saving_is_deterministic(self):
create_saved_model = f'{FLAGS.test_srcdir}/create_test_saved_model.par'
saved_model_a_path = f'{FLAGS.test_tmpdir}/a'
saved_model_b_path = f'{FLAGS.test_tmpdir}/b'
Reported by Pylint.
Line: 15
Column: 1
FLAGS = flags.FLAGS
class DeterminismTest(tf.test.TestCase):
def test_saving_is_deterministic(self):
create_saved_model = f'{FLAGS.test_srcdir}/create_test_saved_model.par'
saved_model_a_path = f'{FLAGS.test_tmpdir}/a'
saved_model_b_path = f'{FLAGS.test_tmpdir}/b'
Reported by Pylint.
Line: 17
Column: 3
class DeterminismTest(tf.test.TestCase):
def test_saving_is_deterministic(self):
create_saved_model = f'{FLAGS.test_srcdir}/create_test_saved_model.par'
saved_model_a_path = f'{FLAGS.test_tmpdir}/a'
saved_model_b_path = f'{FLAGS.test_tmpdir}/b'
save_a = subprocess.Popen(
Reported by Pylint.
Line: 17
Column: 1
class DeterminismTest(tf.test.TestCase):
def test_saving_is_deterministic(self):
create_saved_model = f'{FLAGS.test_srcdir}/create_test_saved_model.par'
saved_model_a_path = f'{FLAGS.test_tmpdir}/a'
saved_model_b_path = f'{FLAGS.test_tmpdir}/b'
save_a = subprocess.Popen(
Reported by Pylint.
keras/optimizers.py
28 issues
Line: 21
Column: 1
For more examples see the base class `tf.keras.optimizers.Optimizer`.
"""
import tensorflow.compat.v2 as tf
from keras import backend
from keras.optimizer_v1 import Optimizer
from keras.optimizer_v1 import TFOptimizer
from keras.optimizer_v2 import adadelta as adadelta_v2
Reported by Pylint.
Line: 37
Column: 1
from keras.optimizer_v2 import rmsprop as rmsprop_v2
from keras.utils.generic_utils import deserialize_keras_object
from keras.utils.generic_utils import serialize_keras_object
from tensorflow.python.util.tf_export import keras_export
@keras_export('keras.optimizers.serialize')
def serialize(optimizer):
"""Serialize the optimizer configuration to JSON compatible python dict.
Reported by Pylint.
Line: 75
Column: 1
"""
# loss_scale_optimizer has a direct dependency of optimizer, import here
# rather than top to avoid the cyclic dependency.
from keras.mixed_precision import loss_scale_optimizer # pylint: disable=g-import-not-at-top
all_classes = {
'adadelta': adadelta_v2.Adadelta,
'adagrad': adagrad_v2.Adagrad,
'adam': adam_v2.Adam,
'adamax': adamax_v2.Adamax,
Reported by Pylint.
Line: 37
Column: 1
from keras.optimizer_v2 import rmsprop as rmsprop_v2
from keras.utils.generic_utils import deserialize_keras_object
from keras.utils.generic_utils import serialize_keras_object
from tensorflow.python.util.tf_export import keras_export
@keras_export('keras.optimizers.serialize')
def serialize(optimizer):
"""Serialize the optimizer configuration to JSON compatible python dict.
Reported by Pylint.
Line: 42
Column: 1
@keras_export('keras.optimizers.serialize')
def serialize(optimizer):
"""Serialize the optimizer configuration to JSON compatible python dict.
The configuration can be used for persistence and reconstruct the `Optimizer`
instance again.
>>> tf.keras.optimizers.serialize(tf.keras.optimizers.SGD())
Reported by Pylint.
Line: 58
Column: 1
Returns:
Python dict which contains the configuration of the input optimizer.
"""
return serialize_keras_object(optimizer)
@keras_export('keras.optimizers.deserialize')
def deserialize(config, custom_objects=None):
"""Inverse of the `serialize` function.
Reported by Pylint.
Line: 63
Column: 1
@keras_export('keras.optimizers.deserialize')
def deserialize(config, custom_objects=None):
"""Inverse of the `serialize` function.
Args:
config: Optimizer configuration dictionary.
custom_objects: Optional dictionary mapping names (strings) to custom
objects (classes and functions) to be considered during deserialization.
Reported by Pylint.
Line: 75
Column: 3
"""
# loss_scale_optimizer has a direct dependency of optimizer, import here
# rather than top to avoid the cyclic dependency.
from keras.mixed_precision import loss_scale_optimizer # pylint: disable=g-import-not-at-top
all_classes = {
'adadelta': adadelta_v2.Adadelta,
'adagrad': adagrad_v2.Adagrad,
'adam': adam_v2.Adam,
'adamax': adamax_v2.Adamax,
Reported by Pylint.
Line: 75
Column: 1
"""
# loss_scale_optimizer has a direct dependency of optimizer, import here
# rather than top to avoid the cyclic dependency.
from keras.mixed_precision import loss_scale_optimizer # pylint: disable=g-import-not-at-top
all_classes = {
'adadelta': adadelta_v2.Adadelta,
'adagrad': adagrad_v2.Adagrad,
'adam': adam_v2.Adam,
'adamax': adamax_v2.Adamax,
Reported by Pylint.
Line: 76
Column: 1
# loss_scale_optimizer has a direct dependency of optimizer, import here
# rather than top to avoid the cyclic dependency.
from keras.mixed_precision import loss_scale_optimizer # pylint: disable=g-import-not-at-top
all_classes = {
'adadelta': adadelta_v2.Adadelta,
'adagrad': adagrad_v2.Adagrad,
'adam': adam_v2.Adam,
'adamax': adamax_v2.Adamax,
'nadam': nadam_v2.Nadam,
Reported by Pylint.
keras/layers/core/permute.py
27 issues
Line: 16
Column: 1
# limitations under the License.
# ==============================================================================
"""Contains the Permute layer."""
# pylint: disable=g-classes-have-attributes,g-direct-tensorflow-import
import copy
from keras.engine.base_layer import Layer
from keras.engine.input_spec import InputSpec
import tensorflow.compat.v2 as tf
Reported by Pylint.
Line: 16
Column: 1
# limitations under the License.
# ==============================================================================
"""Contains the Permute layer."""
# pylint: disable=g-classes-have-attributes,g-direct-tensorflow-import
import copy
from keras.engine.base_layer import Layer
from keras.engine.input_spec import InputSpec
import tensorflow.compat.v2 as tf
Reported by Pylint.
Line: 21
Column: 1
import copy
from keras.engine.base_layer import Layer
from keras.engine.input_spec import InputSpec
import tensorflow.compat.v2 as tf
from tensorflow.python.util.tf_export import keras_export
@keras_export('keras.layers.Permute')
class Permute(Layer):
Reported by Pylint.
Line: 22
Column: 1
from keras.engine.base_layer import Layer
from keras.engine.input_spec import InputSpec
import tensorflow.compat.v2 as tf
from tensorflow.python.util.tf_export import keras_export
@keras_export('keras.layers.Permute')
class Permute(Layer):
"""Permutes the dimensions of the input according to a given pattern.
Reported by Pylint.
Line: 74
Column: 3
output_shape[i + 1] = target_dim
return tf.TensorShape(output_shape)
def call(self, inputs):
return tf.transpose(inputs, perm=(0,) + self.dims)
def get_config(self):
config = {'dims': self.dims}
base_config = super(Permute, self).get_config()
Reported by Pylint.
Line: 27
Column: 1
@keras_export('keras.layers.Permute')
class Permute(Layer):
"""Permutes the dimensions of the input according to a given pattern.
Useful e.g. connecting RNNs and convnets.
Example:
Reported by Pylint.
Line: 56
Column: 1
to the specified pattern.
"""
def __init__(self, dims, **kwargs):
super(Permute, self).__init__(**kwargs)
self.dims = tuple(dims)
if sorted(dims) != list(range(1, len(dims) + 1)):
raise ValueError(
'Invalid permutation argument `dims` for Permute Layer. '
Reported by Pylint.
Line: 57
Column: 1
"""
def __init__(self, dims, **kwargs):
super(Permute, self).__init__(**kwargs)
self.dims = tuple(dims)
if sorted(dims) != list(range(1, len(dims) + 1)):
raise ValueError(
'Invalid permutation argument `dims` for Permute Layer. '
'The set of indices in `dims` must be consecutive and start from 1. '
Reported by Pylint.
Line: 57
Column: 5
"""
def __init__(self, dims, **kwargs):
super(Permute, self).__init__(**kwargs)
self.dims = tuple(dims)
if sorted(dims) != list(range(1, len(dims) + 1)):
raise ValueError(
'Invalid permutation argument `dims` for Permute Layer. '
'The set of indices in `dims` must be consecutive and start from 1. '
Reported by Pylint.
Line: 58
Column: 1
def __init__(self, dims, **kwargs):
super(Permute, self).__init__(**kwargs)
self.dims = tuple(dims)
if sorted(dims) != list(range(1, len(dims) + 1)):
raise ValueError(
'Invalid permutation argument `dims` for Permute Layer. '
'The set of indices in `dims` must be consecutive and start from 1. '
f'Received dims={dims}')
Reported by Pylint.
keras/backend_config_test.py
27 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for backend_config."""
import tensorflow.compat.v2 as tf
from keras import backend
from keras import backend_config
from keras import combinations
Reported by Pylint.
Line: 25
Column: 1
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
class BackendConfigTest(tf.test.TestCase):
def test_backend(self):
self.assertEqual(backend.backend(), 'tensorflow')
def test_epsilon(self):
Reported by Pylint.
Line: 27
Column: 3
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
class BackendConfigTest(tf.test.TestCase):
def test_backend(self):
self.assertEqual(backend.backend(), 'tensorflow')
def test_epsilon(self):
epsilon = 1e-2
backend_config.set_epsilon(epsilon)
Reported by Pylint.
Line: 27
Column: 1
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
class BackendConfigTest(tf.test.TestCase):
def test_backend(self):
self.assertEqual(backend.backend(), 'tensorflow')
def test_epsilon(self):
epsilon = 1e-2
backend_config.set_epsilon(epsilon)
Reported by Pylint.
Line: 28
Column: 1
class BackendConfigTest(tf.test.TestCase):
def test_backend(self):
self.assertEqual(backend.backend(), 'tensorflow')
def test_epsilon(self):
epsilon = 1e-2
backend_config.set_epsilon(epsilon)
self.assertEqual(backend_config.epsilon(), epsilon)
Reported by Pylint.
Line: 30
Column: 1
def test_backend(self):
self.assertEqual(backend.backend(), 'tensorflow')
def test_epsilon(self):
epsilon = 1e-2
backend_config.set_epsilon(epsilon)
self.assertEqual(backend_config.epsilon(), epsilon)
backend_config.set_epsilon(1e-7)
self.assertEqual(backend_config.epsilon(), 1e-7)
Reported by Pylint.
Line: 30
Column: 3
def test_backend(self):
self.assertEqual(backend.backend(), 'tensorflow')
def test_epsilon(self):
epsilon = 1e-2
backend_config.set_epsilon(epsilon)
self.assertEqual(backend_config.epsilon(), epsilon)
backend_config.set_epsilon(1e-7)
self.assertEqual(backend_config.epsilon(), 1e-7)
Reported by Pylint.
Line: 31
Column: 1
self.assertEqual(backend.backend(), 'tensorflow')
def test_epsilon(self):
epsilon = 1e-2
backend_config.set_epsilon(epsilon)
self.assertEqual(backend_config.epsilon(), epsilon)
backend_config.set_epsilon(1e-7)
self.assertEqual(backend_config.epsilon(), 1e-7)
Reported by Pylint.
Line: 32
Column: 1
def test_epsilon(self):
epsilon = 1e-2
backend_config.set_epsilon(epsilon)
self.assertEqual(backend_config.epsilon(), epsilon)
backend_config.set_epsilon(1e-7)
self.assertEqual(backend_config.epsilon(), 1e-7)
def test_floatx(self):
Reported by Pylint.
Line: 33
Column: 1
def test_epsilon(self):
epsilon = 1e-2
backend_config.set_epsilon(epsilon)
self.assertEqual(backend_config.epsilon(), epsilon)
backend_config.set_epsilon(1e-7)
self.assertEqual(backend_config.epsilon(), 1e-7)
def test_floatx(self):
floatx = 'float64'
Reported by Pylint.
keras/layers/core/masking.py
26 issues
Line: 16
Column: 1
# limitations under the License.
# ==============================================================================
"""Contains the Masking layer."""
# pylint: disable=g-classes-have-attributes,g-direct-tensorflow-import
from keras import backend as K
from keras.engine.base_layer import Layer
import tensorflow.compat.v2 as tf
from tensorflow.python.util.tf_export import keras_export
Reported by Pylint.
Line: 16
Column: 1
# limitations under the License.
# ==============================================================================
"""Contains the Masking layer."""
# pylint: disable=g-classes-have-attributes,g-direct-tensorflow-import
from keras import backend as K
from keras.engine.base_layer import Layer
import tensorflow.compat.v2 as tf
from tensorflow.python.util.tf_export import keras_export
Reported by Pylint.
Line: 20
Column: 1
from keras import backend as K
from keras.engine.base_layer import Layer
import tensorflow.compat.v2 as tf
from tensorflow.python.util.tf_export import keras_export
@keras_export('keras.layers.Masking')
class Masking(Layer):
Reported by Pylint.
Line: 21
Column: 1
from keras import backend as K
from keras.engine.base_layer import Layer
import tensorflow.compat.v2 as tf
from tensorflow.python.util.tf_export import keras_export
@keras_export('keras.layers.Masking')
class Masking(Layer):
"""Masks a sequence by using a mask value to skip timesteps.
Reported by Pylint.
Line: 74
Column: 3
def compute_mask(self, inputs, mask=None):
return K.any(tf.not_equal(inputs, self.mask_value), axis=-1)
def call(self, inputs):
boolean_mask = K.any(
tf.not_equal(inputs, self.mask_value), axis=-1, keepdims=True)
outputs = inputs * tf.cast(boolean_mask, inputs.dtype)
# Compute the mask and outputs simultaneously.
outputs._keras_mask = tf.squeeze(boolean_mask, axis=-1) # pylint: disable=protected-access
Reported by Pylint.
Line: 26
Column: 1
@keras_export('keras.layers.Masking')
class Masking(Layer):
"""Masks a sequence by using a mask value to skip timesteps.
For each timestep in the input tensor (dimension #1 in the tensor),
if all values in the input tensor at that timestep
are equal to `mask_value`, then the timestep will be masked (skipped)
in all downstream layers (as long as they support masking).
Reported by Pylint.
Line: 65
Column: 1
for more details.
"""
def __init__(self, mask_value=0., **kwargs):
super(Masking, self).__init__(**kwargs)
self.supports_masking = True
self.mask_value = mask_value
self._compute_output_and_mask_jointly = True
Reported by Pylint.
Line: 66
Column: 1
"""
def __init__(self, mask_value=0., **kwargs):
super(Masking, self).__init__(**kwargs)
self.supports_masking = True
self.mask_value = mask_value
self._compute_output_and_mask_jointly = True
def compute_mask(self, inputs, mask=None):
Reported by Pylint.
Line: 66
Column: 5
"""
def __init__(self, mask_value=0., **kwargs):
super(Masking, self).__init__(**kwargs)
self.supports_masking = True
self.mask_value = mask_value
self._compute_output_and_mask_jointly = True
def compute_mask(self, inputs, mask=None):
Reported by Pylint.
Line: 67
Column: 1
def __init__(self, mask_value=0., **kwargs):
super(Masking, self).__init__(**kwargs)
self.supports_masking = True
self.mask_value = mask_value
self._compute_output_and_mask_jointly = True
def compute_mask(self, inputs, mask=None):
return K.any(tf.not_equal(inputs, self.mask_value), axis=-1)
Reported by Pylint.