The following issues were found

keras/engine/input_spec_test.py
32 issues
Unable to import 'tensorflow.compat.v2'
Error

Line: 21 Column: 1

              from __future__ import division
from __future__ import print_function

import tensorflow.compat.v2 as tf

from keras.engine import input_spec


class InputSpecTest(tf.test.TestCase):

            

Reported by Pylint.

Missing class docstring
Error

Line: 26 Column: 1

              from keras.engine import input_spec


class InputSpecTest(tf.test.TestCase):

  def test_axes_initialization(self):
    input_spec.InputSpec(shape=[1, None, 2, 3], axes={3: 5, '2': 2})
    with self.assertRaisesRegex(ValueError, 'Axis 4 is greater than'):
      input_spec.InputSpec(shape=[1, None, 2, 3], axes={4: 5})

            

Reported by Pylint.

Too few public methods (1/2)
Error

Line: 26 Column: 1

              from keras.engine import input_spec


class InputSpecTest(tf.test.TestCase):

  def test_axes_initialization(self):
    input_spec.InputSpec(shape=[1, None, 2, 3], axes={3: 5, '2': 2})
    with self.assertRaisesRegex(ValueError, 'Axis 4 is greater than'):
      input_spec.InputSpec(shape=[1, None, 2, 3], axes={4: 5})

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 28 Column: 1

              
class InputSpecTest(tf.test.TestCase):

  def test_axes_initialization(self):
    input_spec.InputSpec(shape=[1, None, 2, 3], axes={3: 5, '2': 2})
    with self.assertRaisesRegex(ValueError, 'Axis 4 is greater than'):
      input_spec.InputSpec(shape=[1, None, 2, 3], axes={4: 5})
    with self.assertRaisesRegex(TypeError, 'keys in axes must be integers'):
      input_spec.InputSpec(shape=[1, None, 2, 3], axes={'string': 5})

            

Reported by Pylint.

Missing function or method docstring
Error

Line: 28 Column: 3

              
class InputSpecTest(tf.test.TestCase):

  def test_axes_initialization(self):
    input_spec.InputSpec(shape=[1, None, 2, 3], axes={3: 5, '2': 2})
    with self.assertRaisesRegex(ValueError, 'Axis 4 is greater than'):
      input_spec.InputSpec(shape=[1, None, 2, 3], axes={4: 5})
    with self.assertRaisesRegex(TypeError, 'keys in axes must be integers'):
      input_spec.InputSpec(shape=[1, None, 2, 3], axes={'string': 5})

            

Reported by Pylint.

Bad indentation. Found 4 spaces, expected 8
Style

Line: 29 Column: 1

              class InputSpecTest(tf.test.TestCase):

  def test_axes_initialization(self):
    input_spec.InputSpec(shape=[1, None, 2, 3], axes={3: 5, '2': 2})
    with self.assertRaisesRegex(ValueError, 'Axis 4 is greater than'):
      input_spec.InputSpec(shape=[1, None, 2, 3], axes={4: 5})
    with self.assertRaisesRegex(TypeError, 'keys in axes must be integers'):
      input_spec.InputSpec(shape=[1, None, 2, 3], axes={'string': 5})


            

Reported by Pylint.

Bad indentation. Found 4 spaces, expected 8
Style

Line: 30 Column: 1

              
  def test_axes_initialization(self):
    input_spec.InputSpec(shape=[1, None, 2, 3], axes={3: 5, '2': 2})
    with self.assertRaisesRegex(ValueError, 'Axis 4 is greater than'):
      input_spec.InputSpec(shape=[1, None, 2, 3], axes={4: 5})
    with self.assertRaisesRegex(TypeError, 'keys in axes must be integers'):
      input_spec.InputSpec(shape=[1, None, 2, 3], axes={'string': 5})



            

Reported by Pylint.

Bad indentation. Found 6 spaces, expected 12
Style

Line: 31 Column: 1

                def test_axes_initialization(self):
    input_spec.InputSpec(shape=[1, None, 2, 3], axes={3: 5, '2': 2})
    with self.assertRaisesRegex(ValueError, 'Axis 4 is greater than'):
      input_spec.InputSpec(shape=[1, None, 2, 3], axes={4: 5})
    with self.assertRaisesRegex(TypeError, 'keys in axes must be integers'):
      input_spec.InputSpec(shape=[1, None, 2, 3], axes={'string': 5})


class InputSpecToTensorShapeTest(tf.test.TestCase):

            

Reported by Pylint.

Bad indentation. Found 4 spaces, expected 8
Style

Line: 32 Column: 1

                  input_spec.InputSpec(shape=[1, None, 2, 3], axes={3: 5, '2': 2})
    with self.assertRaisesRegex(ValueError, 'Axis 4 is greater than'):
      input_spec.InputSpec(shape=[1, None, 2, 3], axes={4: 5})
    with self.assertRaisesRegex(TypeError, 'keys in axes must be integers'):
      input_spec.InputSpec(shape=[1, None, 2, 3], axes={'string': 5})


class InputSpecToTensorShapeTest(tf.test.TestCase):


            

Reported by Pylint.

Bad indentation. Found 6 spaces, expected 12
Style

Line: 33 Column: 1

                  with self.assertRaisesRegex(ValueError, 'Axis 4 is greater than'):
      input_spec.InputSpec(shape=[1, None, 2, 3], axes={4: 5})
    with self.assertRaisesRegex(TypeError, 'keys in axes must be integers'):
      input_spec.InputSpec(shape=[1, None, 2, 3], axes={'string': 5})


class InputSpecToTensorShapeTest(tf.test.TestCase):

  def test_defined_shape(self):

            

Reported by Pylint.

keras/layers/preprocessing/benchmarks/category_hash_varlen_benchmark.py
31 issues
Unable to import 'tensorflow'
Error

Line: 17 Column: 1

              # ==============================================================================
"""Benchmark for KPL implementation of categorical hash columns with varying-length inputs."""

import tensorflow as tf

import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import hashing
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm

            

Reported by Pylint.

Unable to import 'keras'
Error

Line: 19 Column: 1

              
import tensorflow as tf

import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import hashing
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm

# This is required as of 3/2021 because otherwise we drop into graph mode.

            

Reported by Pylint.

Unable to import 'tensorflow.python.eager.def_function'
Error

Line: 20 Column: 1

              import tensorflow as tf

import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import hashing
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm

# This is required as of 3/2021 because otherwise we drop into graph mode.
tf.compat.v1.enable_v2_behavior()

            

Reported by Pylint.

Unable to import 'keras.layers.preprocessing'
Error

Line: 21 Column: 1

              
import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import hashing
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm

# This is required as of 3/2021 because otherwise we drop into graph mode.
tf.compat.v1.enable_v2_behavior()


            

Reported by Pylint.

Unable to import 'keras.layers.preprocessing.benchmarks'
Error

Line: 22 Column: 1

              import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import hashing
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm

# This is required as of 3/2021 because otherwise we drop into graph mode.
tf.compat.v1.enable_v2_behavior()

NUM_REPEATS = 10

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 32 Column: 1

              

def embedding_varlen(batch_size, max_length):
  """Benchmark a variable-length embedding."""
  # Data and constants.

  num_buckets = 10000
  vocab = fc_bm.create_vocabulary(32768)
  data = fc_bm.create_string_data(

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 35 Column: 1

                """Benchmark a variable-length embedding."""
  # Data and constants.

  num_buckets = 10000
  vocab = fc_bm.create_vocabulary(32768)
  data = fc_bm.create_string_data(
      max_length, batch_size * NUM_REPEATS, vocab, pct_oov=0.0)

  # Keras implementation

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 36 Column: 1

                # Data and constants.

  num_buckets = 10000
  vocab = fc_bm.create_vocabulary(32768)
  data = fc_bm.create_string_data(
      max_length, batch_size * NUM_REPEATS, vocab, pct_oov=0.0)

  # Keras implementation
  model = keras.Sequential()

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 37 Column: 1

              
  num_buckets = 10000
  vocab = fc_bm.create_vocabulary(32768)
  data = fc_bm.create_string_data(
      max_length, batch_size * NUM_REPEATS, vocab, pct_oov=0.0)

  # Keras implementation
  model = keras.Sequential()
  model.add(

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 41 Column: 1

                    max_length, batch_size * NUM_REPEATS, vocab, pct_oov=0.0)

  # Keras implementation
  model = keras.Sequential()
  model.add(
      keras.Input(
          shape=(max_length,), name="data", ragged=True, dtype=tf.string))
  model.add(hashing.Hashing(num_buckets))


            

Reported by Pylint.

keras/layers/preprocessing/benchmarks/bucketized_column_dense_benchmark.py
31 issues
Unable to import 'tensorflow'
Error

Line: 17 Column: 1

              # ==============================================================================
"""Benchmark for KPL implementation of bucketized columns with dense inputs."""

import tensorflow as tf

import numpy as np

import keras
from tensorflow.python.eager.def_function import function as tf_function

            

Reported by Pylint.

Unable to import 'keras'
Error

Line: 21 Column: 1

              
import numpy as np

import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import discretization
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm

# This is required as of 3/2021 because otherwise we drop into graph mode.

            

Reported by Pylint.

Unable to import 'tensorflow.python.eager.def_function'
Error

Line: 22 Column: 1

              import numpy as np

import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import discretization
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm

# This is required as of 3/2021 because otherwise we drop into graph mode.
tf.compat.v1.enable_v2_behavior()

            

Reported by Pylint.

Unable to import 'keras.layers.preprocessing'
Error

Line: 23 Column: 1

              
import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import discretization
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm

# This is required as of 3/2021 because otherwise we drop into graph mode.
tf.compat.v1.enable_v2_behavior()


            

Reported by Pylint.

Unable to import 'keras.layers.preprocessing.benchmarks'
Error

Line: 24 Column: 1

              import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import discretization
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm

# This is required as of 3/2021 because otherwise we drop into graph mode.
tf.compat.v1.enable_v2_behavior()

NUM_REPEATS = 10  # The number of times to run each benchmark.

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 35 Column: 1

              
### KPL AND FC IMPLEMENTATION BENCHMARKS ###
def embedding_varlen(batch_size, max_length):
  """Benchmark a variable-length embedding."""
  # Data and constants.
  max_value = 25.0
  bins = np.arange(1.0, max_value)
  data = fc_bm.create_data(
      max_length, batch_size * NUM_REPEATS, 100000, dtype=float)

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 37 Column: 1

              def embedding_varlen(batch_size, max_length):
  """Benchmark a variable-length embedding."""
  # Data and constants.
  max_value = 25.0
  bins = np.arange(1.0, max_value)
  data = fc_bm.create_data(
      max_length, batch_size * NUM_REPEATS, 100000, dtype=float)

  # Keras implementation

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 38 Column: 1

                """Benchmark a variable-length embedding."""
  # Data and constants.
  max_value = 25.0
  bins = np.arange(1.0, max_value)
  data = fc_bm.create_data(
      max_length, batch_size * NUM_REPEATS, 100000, dtype=float)

  # Keras implementation
  model = keras.Sequential()

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 39 Column: 1

                # Data and constants.
  max_value = 25.0
  bins = np.arange(1.0, max_value)
  data = fc_bm.create_data(
      max_length, batch_size * NUM_REPEATS, 100000, dtype=float)

  # Keras implementation
  model = keras.Sequential()
  model.add(keras.Input(shape=(max_length,), name="data", dtype=tf.float32))

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 43 Column: 1

                    max_length, batch_size * NUM_REPEATS, 100000, dtype=float)

  # Keras implementation
  model = keras.Sequential()
  model.add(keras.Input(shape=(max_length,), name="data", dtype=tf.float32))
  model.add(discretization.Discretization(bins))

  # FC implementation
  fc = tf.feature_column.bucketized_column(

            

Reported by Pylint.

keras/tests/get_config_test.py
31 issues
Unable to import 'tensorflow.compat.v2'
Error

Line: 17 Column: 1

              #,============================================================================
"""Tests for `get_config` backwards compatibility."""

import tensorflow.compat.v2 as tf

from keras import keras_parameterized
from keras.engine import sequential
from keras.engine import training
from keras.tests import get_config_samples

            

Reported by Pylint.

Unable to import 'keras'
Error

Line: 19 Column: 1

              
import tensorflow.compat.v2 as tf

from keras import keras_parameterized
from keras.engine import sequential
from keras.engine import training
from keras.tests import get_config_samples



            

Reported by Pylint.

Unable to import 'keras.engine'
Error

Line: 20 Column: 1

              import tensorflow.compat.v2 as tf

from keras import keras_parameterized
from keras.engine import sequential
from keras.engine import training
from keras.tests import get_config_samples


@keras_parameterized.run_all_keras_modes

            

Reported by Pylint.

Unable to import 'keras.engine'
Error

Line: 21 Column: 1

              
from keras import keras_parameterized
from keras.engine import sequential
from keras.engine import training
from keras.tests import get_config_samples


@keras_parameterized.run_all_keras_modes
class TestGetConfigBackwardsCompatible(keras_parameterized.TestCase):

            

Reported by Pylint.

Unable to import 'keras.tests'
Error

Line: 22 Column: 1

              from keras import keras_parameterized
from keras.engine import sequential
from keras.engine import training
from keras.tests import get_config_samples


@keras_parameterized.run_all_keras_modes
class TestGetConfigBackwardsCompatible(keras_parameterized.TestCase):


            

Reported by Pylint.

Missing class docstring
Error

Line: 26 Column: 1

              

@keras_parameterized.run_all_keras_modes
class TestGetConfigBackwardsCompatible(keras_parameterized.TestCase):

  def test_functional_dnn(self):
    model = training.Model.from_config(get_config_samples.FUNCTIONAL_DNN)
    self.assertLen(model.layers, 3)


            

Reported by Pylint.

Missing function or method docstring
Error

Line: 28 Column: 3

              @keras_parameterized.run_all_keras_modes
class TestGetConfigBackwardsCompatible(keras_parameterized.TestCase):

  def test_functional_dnn(self):
    model = training.Model.from_config(get_config_samples.FUNCTIONAL_DNN)
    self.assertLen(model.layers, 3)

  def test_functional_cnn(self):
    model = training.Model.from_config(get_config_samples.FUNCTIONAL_CNN)

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 28 Column: 1

              @keras_parameterized.run_all_keras_modes
class TestGetConfigBackwardsCompatible(keras_parameterized.TestCase):

  def test_functional_dnn(self):
    model = training.Model.from_config(get_config_samples.FUNCTIONAL_DNN)
    self.assertLen(model.layers, 3)

  def test_functional_cnn(self):
    model = training.Model.from_config(get_config_samples.FUNCTIONAL_CNN)

            

Reported by Pylint.

Bad indentation. Found 4 spaces, expected 8
Style

Line: 29 Column: 1

              class TestGetConfigBackwardsCompatible(keras_parameterized.TestCase):

  def test_functional_dnn(self):
    model = training.Model.from_config(get_config_samples.FUNCTIONAL_DNN)
    self.assertLen(model.layers, 3)

  def test_functional_cnn(self):
    model = training.Model.from_config(get_config_samples.FUNCTIONAL_CNN)
    self.assertLen(model.layers, 4)

            

Reported by Pylint.

Bad indentation. Found 4 spaces, expected 8
Style

Line: 30 Column: 1

              
  def test_functional_dnn(self):
    model = training.Model.from_config(get_config_samples.FUNCTIONAL_DNN)
    self.assertLen(model.layers, 3)

  def test_functional_cnn(self):
    model = training.Model.from_config(get_config_samples.FUNCTIONAL_CNN)
    self.assertLen(model.layers, 4)


            

Reported by Pylint.

keras/layers/preprocessing/benchmarks/category_hash_dense_benchmark.py
31 issues
Unable to import 'tensorflow'
Error

Line: 17 Column: 1

              # ==============================================================================
"""Benchmark for KPL implementation of categorical hash columns with dense inputs."""

import tensorflow as tf

import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import hashing
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm

            

Reported by Pylint.

Unable to import 'keras'
Error

Line: 19 Column: 1

              
import tensorflow as tf

import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import hashing
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm

# This is required as of 3/2021 because otherwise we drop into graph mode.

            

Reported by Pylint.

Unable to import 'tensorflow.python.eager.def_function'
Error

Line: 20 Column: 1

              import tensorflow as tf

import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import hashing
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm

# This is required as of 3/2021 because otherwise we drop into graph mode.
tf.compat.v1.enable_v2_behavior()

            

Reported by Pylint.

Unable to import 'keras.layers.preprocessing'
Error

Line: 21 Column: 1

              
import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import hashing
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm

# This is required as of 3/2021 because otherwise we drop into graph mode.
tf.compat.v1.enable_v2_behavior()


            

Reported by Pylint.

Unable to import 'keras.layers.preprocessing.benchmarks'
Error

Line: 22 Column: 1

              import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import hashing
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm

# This is required as of 3/2021 because otherwise we drop into graph mode.
tf.compat.v1.enable_v2_behavior()

NUM_REPEATS = 10

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 32 Column: 1

              

def embedding_varlen(batch_size, max_length):
  """Benchmark a variable-length embedding."""
  # Data and constants.

  num_buckets = 10000
  vocab = fc_bm.create_vocabulary(32768)
  data = fc_bm.create_string_data(

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 35 Column: 1

                """Benchmark a variable-length embedding."""
  # Data and constants.

  num_buckets = 10000
  vocab = fc_bm.create_vocabulary(32768)
  data = fc_bm.create_string_data(
      max_length, batch_size * NUM_REPEATS, vocab, pct_oov=0.0)

  # Keras implementation

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 36 Column: 1

                # Data and constants.

  num_buckets = 10000
  vocab = fc_bm.create_vocabulary(32768)
  data = fc_bm.create_string_data(
      max_length, batch_size * NUM_REPEATS, vocab, pct_oov=0.0)

  # Keras implementation
  model = keras.Sequential()

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 37 Column: 1

              
  num_buckets = 10000
  vocab = fc_bm.create_vocabulary(32768)
  data = fc_bm.create_string_data(
      max_length, batch_size * NUM_REPEATS, vocab, pct_oov=0.0)

  # Keras implementation
  model = keras.Sequential()
  model.add(keras.Input(shape=(max_length,), name="data", dtype=tf.string))

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 41 Column: 1

                    max_length, batch_size * NUM_REPEATS, vocab, pct_oov=0.0)

  # Keras implementation
  model = keras.Sequential()
  model.add(keras.Input(shape=(max_length,), name="data", dtype=tf.string))
  model.add(hashing.Hashing(num_buckets))

  # FC implementation
  fc = tf.feature_column.sequence_categorical_column_with_hash_bucket("data", num_buckets)

            

Reported by Pylint.

keras/layers/preprocessing/normalization_distribution_test.py
30 issues
Unable to import 'tensorflow.compat.v2'
Error

Line: 17 Column: 1

              # ==============================================================================
"""Distribution tests for keras.layers.preprocessing.normalization."""

import tensorflow.compat.v2 as tf

import numpy as np

import keras
from keras import keras_parameterized

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 29 Column: 1

              

def _get_layer_computation_test_cases():
  test_cases = ({
      "adapt_data": np.array([[1.], [2.], [3.], [4.], [5.]], dtype=np.float32),
      "axis": -1,
      "test_data": np.array([[1.], [2.], [3.]], np.float32),
      "expected": np.array([[-1.414214], [-.707107], [0]], np.float32),
      "testcase_name": "2d_single_element"

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 80 Column: 1

                        "3d_multiple_axis"
  })

  crossed_test_cases = []
  # Cross above test cases with use_dataset in (True, False)
  for use_dataset in (True, False):
    for case in test_cases:
      case = case.copy()
      if use_dataset:

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 82 Column: 1

              
  crossed_test_cases = []
  # Cross above test cases with use_dataset in (True, False)
  for use_dataset in (True, False):
    for case in test_cases:
      case = case.copy()
      if use_dataset:
        case["testcase_name"] = case["testcase_name"] + "_with_dataset"
      case["use_dataset"] = use_dataset

            

Reported by Pylint.

Bad indentation. Found 4 spaces, expected 8
Style

Line: 83 Column: 1

                crossed_test_cases = []
  # Cross above test cases with use_dataset in (True, False)
  for use_dataset in (True, False):
    for case in test_cases:
      case = case.copy()
      if use_dataset:
        case["testcase_name"] = case["testcase_name"] + "_with_dataset"
      case["use_dataset"] = use_dataset
      crossed_test_cases.append(case)

            

Reported by Pylint.

Bad indentation. Found 6 spaces, expected 12
Style

Line: 84 Column: 1

                # Cross above test cases with use_dataset in (True, False)
  for use_dataset in (True, False):
    for case in test_cases:
      case = case.copy()
      if use_dataset:
        case["testcase_name"] = case["testcase_name"] + "_with_dataset"
      case["use_dataset"] = use_dataset
      crossed_test_cases.append(case)


            

Reported by Pylint.

Bad indentation. Found 6 spaces, expected 12
Style

Line: 85 Column: 1

                for use_dataset in (True, False):
    for case in test_cases:
      case = case.copy()
      if use_dataset:
        case["testcase_name"] = case["testcase_name"] + "_with_dataset"
      case["use_dataset"] = use_dataset
      crossed_test_cases.append(case)

  return crossed_test_cases

            

Reported by Pylint.

Bad indentation. Found 8 spaces, expected 16
Style

Line: 86 Column: 1

                  for case in test_cases:
      case = case.copy()
      if use_dataset:
        case["testcase_name"] = case["testcase_name"] + "_with_dataset"
      case["use_dataset"] = use_dataset
      crossed_test_cases.append(case)

  return crossed_test_cases


            

Reported by Pylint.

Bad indentation. Found 6 spaces, expected 12
Style

Line: 87 Column: 1

                    case = case.copy()
      if use_dataset:
        case["testcase_name"] = case["testcase_name"] + "_with_dataset"
      case["use_dataset"] = use_dataset
      crossed_test_cases.append(case)

  return crossed_test_cases



            

Reported by Pylint.

Bad indentation. Found 6 spaces, expected 12
Style

Line: 88 Column: 1

                    if use_dataset:
        case["testcase_name"] = case["testcase_name"] + "_with_dataset"
      case["use_dataset"] = use_dataset
      crossed_test_cases.append(case)

  return crossed_test_cases


@tf.__internal__.distribute.combinations.generate(

            

Reported by Pylint.

keras/layers/preprocessing/benchmarks/category_vocab_list_dense_benchmark.py
30 issues
Unable to import 'tensorflow'
Error

Line: 17 Column: 1

              # ==============================================================================
"""Benchmark for KPL implementation of vocabulary columns from lists with dense inputs."""

import tensorflow as tf

import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import string_lookup
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm

            

Reported by Pylint.

Unable to import 'keras'
Error

Line: 19 Column: 1

              
import tensorflow as tf

import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import string_lookup
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm

# This is required as of 3/2021 because otherwise we drop into graph mode.

            

Reported by Pylint.

Unable to import 'tensorflow.python.eager.def_function'
Error

Line: 20 Column: 1

              import tensorflow as tf

import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import string_lookup
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm

# This is required as of 3/2021 because otherwise we drop into graph mode.
tf.compat.v1.enable_v2_behavior()

            

Reported by Pylint.

Unable to import 'keras.layers.preprocessing'
Error

Line: 21 Column: 1

              
import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import string_lookup
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm

# This is required as of 3/2021 because otherwise we drop into graph mode.
tf.compat.v1.enable_v2_behavior()


            

Reported by Pylint.

Unable to import 'keras.layers.preprocessing.benchmarks'
Error

Line: 22 Column: 1

              import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import string_lookup
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm

# This is required as of 3/2021 because otherwise we drop into graph mode.
tf.compat.v1.enable_v2_behavior()

NUM_REPEATS = 10

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 32 Column: 1

              

def embedding_varlen(batch_size, max_length):
  """Benchmark a variable-length embedding."""
  # Data and constants.
  vocab = fc_bm.create_vocabulary(32768)
  data = fc_bm.create_string_data(
      max_length, batch_size * NUM_REPEATS, vocab, pct_oov=0.15)


            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 34 Column: 1

              def embedding_varlen(batch_size, max_length):
  """Benchmark a variable-length embedding."""
  # Data and constants.
  vocab = fc_bm.create_vocabulary(32768)
  data = fc_bm.create_string_data(
      max_length, batch_size * NUM_REPEATS, vocab, pct_oov=0.15)

  # Keras implementation
  model = keras.Sequential()

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 35 Column: 1

                """Benchmark a variable-length embedding."""
  # Data and constants.
  vocab = fc_bm.create_vocabulary(32768)
  data = fc_bm.create_string_data(
      max_length, batch_size * NUM_REPEATS, vocab, pct_oov=0.15)

  # Keras implementation
  model = keras.Sequential()
  model.add(keras.Input(shape=(max_length,), name="data", dtype=tf.string))

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 39 Column: 1

                    max_length, batch_size * NUM_REPEATS, vocab, pct_oov=0.15)

  # Keras implementation
  model = keras.Sequential()
  model.add(keras.Input(shape=(max_length,), name="data", dtype=tf.string))
  model.add(string_lookup.StringLookup(vocabulary=vocab, mask_token=None))

  # FC implementation
  fc = tf.feature_column.categorical_column_with_vocabulary_list(

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 40 Column: 1

              
  # Keras implementation
  model = keras.Sequential()
  model.add(keras.Input(shape=(max_length,), name="data", dtype=tf.string))
  model.add(string_lookup.StringLookup(vocabulary=vocab, mask_token=None))

  # FC implementation
  fc = tf.feature_column.categorical_column_with_vocabulary_list(
      key="data", vocabulary_list=vocab, num_oov_buckets=1)

            

Reported by Pylint.

keras/layers/preprocessing/benchmarks/category_vocab_list_varlen_benchmark.py
30 issues
Unable to import 'tensorflow'
Error

Line: 17 Column: 1

              # ==============================================================================
"""Benchmark for KPL implementation of vocabulary columns from lists with varying-length inputs."""

import tensorflow as tf

import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import string_lookup
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm

            

Reported by Pylint.

Unable to import 'keras'
Error

Line: 19 Column: 1

              
import tensorflow as tf

import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import string_lookup
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm

# This is required as of 3/2021 because otherwise we drop into graph mode.

            

Reported by Pylint.

Unable to import 'tensorflow.python.eager.def_function'
Error

Line: 20 Column: 1

              import tensorflow as tf

import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import string_lookup
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm

# This is required as of 3/2021 because otherwise we drop into graph mode.
tf.compat.v1.enable_v2_behavior()

            

Reported by Pylint.

Unable to import 'keras.layers.preprocessing'
Error

Line: 21 Column: 1

              
import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import string_lookup
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm

# This is required as of 3/2021 because otherwise we drop into graph mode.
tf.compat.v1.enable_v2_behavior()


            

Reported by Pylint.

Unable to import 'keras.layers.preprocessing.benchmarks'
Error

Line: 22 Column: 1

              import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import string_lookup
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm

# This is required as of 3/2021 because otherwise we drop into graph mode.
tf.compat.v1.enable_v2_behavior()

NUM_REPEATS = 10

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 32 Column: 1

              

def embedding_varlen(batch_size, max_length):
  """Benchmark a variable-length embedding."""
  # Data and constants.
  vocab = fc_bm.create_vocabulary(32768)
  data = fc_bm.create_string_data(
      max_length, batch_size * NUM_REPEATS, vocab, pct_oov=0.15)


            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 34 Column: 1

              def embedding_varlen(batch_size, max_length):
  """Benchmark a variable-length embedding."""
  # Data and constants.
  vocab = fc_bm.create_vocabulary(32768)
  data = fc_bm.create_string_data(
      max_length, batch_size * NUM_REPEATS, vocab, pct_oov=0.15)

  # Keras implementation
  model = keras.Sequential()

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 35 Column: 1

                """Benchmark a variable-length embedding."""
  # Data and constants.
  vocab = fc_bm.create_vocabulary(32768)
  data = fc_bm.create_string_data(
      max_length, batch_size * NUM_REPEATS, vocab, pct_oov=0.15)

  # Keras implementation
  model = keras.Sequential()
  model.add(

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 39 Column: 1

                    max_length, batch_size * NUM_REPEATS, vocab, pct_oov=0.15)

  # Keras implementation
  model = keras.Sequential()
  model.add(
      keras.Input(
          shape=(max_length,), name="data", ragged=True, dtype=tf.string))
  model.add(string_lookup.StringLookup(vocabulary=vocab, mask_token=None))


            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 40 Column: 1

              
  # Keras implementation
  model = keras.Sequential()
  model.add(
      keras.Input(
          shape=(max_length,), name="data", ragged=True, dtype=tf.string))
  model.add(string_lookup.StringLookup(vocabulary=vocab, mask_token=None))

  # FC implementation

            

Reported by Pylint.

keras/layers/preprocessing/benchmarks/embedding_dense_benchmark.py
30 issues
Unable to import 'tensorflow'
Error

Line: 17 Column: 1

              # ==============================================================================
"""Benchmark for KPL implementation of embedding column with dense inputs."""

import tensorflow as tf

import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm


            

Reported by Pylint.

Unable to import 'keras'
Error

Line: 19 Column: 1

              
import tensorflow as tf

import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm

# This is required as of 3/2021 because otherwise we drop into graph mode.
tf.compat.v1.enable_v2_behavior()

            

Reported by Pylint.

Unable to import 'tensorflow.python.eager.def_function'
Error

Line: 20 Column: 1

              import tensorflow as tf

import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm

# This is required as of 3/2021 because otherwise we drop into graph mode.
tf.compat.v1.enable_v2_behavior()


            

Reported by Pylint.

Unable to import 'keras.layers.preprocessing.benchmarks'
Error

Line: 21 Column: 1

              
import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm

# This is required as of 3/2021 because otherwise we drop into graph mode.
tf.compat.v1.enable_v2_behavior()

NUM_REPEATS = 10

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 32 Column: 1

              
### KPL AND FC IMPLEMENTATION BENCHMARKS ###
def embedding_varlen(batch_size, max_length):
  """Benchmark a variable-length embedding."""
  # Data and constants.
  embedding_size = 32768
  data = fc_bm.create_data(
      max_length, batch_size * NUM_REPEATS, embedding_size - 1, dtype=int)


            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 34 Column: 1

              def embedding_varlen(batch_size, max_length):
  """Benchmark a variable-length embedding."""
  # Data and constants.
  embedding_size = 32768
  data = fc_bm.create_data(
      max_length, batch_size * NUM_REPEATS, embedding_size - 1, dtype=int)

  # Keras implementation
  model = keras.Sequential()

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 35 Column: 1

                """Benchmark a variable-length embedding."""
  # Data and constants.
  embedding_size = 32768
  data = fc_bm.create_data(
      max_length, batch_size * NUM_REPEATS, embedding_size - 1, dtype=int)

  # Keras implementation
  model = keras.Sequential()
  model.add(keras.Input(shape=(None,), name="data", dtype=tf.int64))

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 39 Column: 1

                    max_length, batch_size * NUM_REPEATS, embedding_size - 1, dtype=int)

  # Keras implementation
  model = keras.Sequential()
  model.add(keras.Input(shape=(None,), name="data", dtype=tf.int64))
  model.add(keras.layers.Embedding(embedding_size, 256))
  model.add(keras.layers.Lambda(lambda x: tf.reduce_mean(x, axis=-1)))

  # FC implementation

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 40 Column: 1

              
  # Keras implementation
  model = keras.Sequential()
  model.add(keras.Input(shape=(None,), name="data", dtype=tf.int64))
  model.add(keras.layers.Embedding(embedding_size, 256))
  model.add(keras.layers.Lambda(lambda x: tf.reduce_mean(x, axis=-1)))

  # FC implementation
  fc = tf.feature_column.embedding_column(

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 41 Column: 1

                # Keras implementation
  model = keras.Sequential()
  model.add(keras.Input(shape=(None,), name="data", dtype=tf.int64))
  model.add(keras.layers.Embedding(embedding_size, 256))
  model.add(keras.layers.Lambda(lambda x: tf.reduce_mean(x, axis=-1)))

  # FC implementation
  fc = tf.feature_column.embedding_column(
      tf.feature_column.categorical_column_with_identity(

            

Reported by Pylint.

keras/layers/preprocessing/benchmarks/embedding_varlen_benchmark.py
30 issues
Unable to import 'tensorflow'
Error

Line: 17 Column: 1

              # ==============================================================================
"""Benchmark for KPL implementation of embedding column with varying-length inputs."""

import tensorflow as tf

import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm


            

Reported by Pylint.

Unable to import 'keras'
Error

Line: 19 Column: 1

              
import tensorflow as tf

import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm

# This is required as of 3/2021 because otherwise we drop into graph mode.
tf.compat.v1.enable_v2_behavior()

            

Reported by Pylint.

Unable to import 'tensorflow.python.eager.def_function'
Error

Line: 20 Column: 1

              import tensorflow as tf

import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm

# This is required as of 3/2021 because otherwise we drop into graph mode.
tf.compat.v1.enable_v2_behavior()


            

Reported by Pylint.

Unable to import 'keras.layers.preprocessing.benchmarks'
Error

Line: 21 Column: 1

              
import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm

# This is required as of 3/2021 because otherwise we drop into graph mode.
tf.compat.v1.enable_v2_behavior()

NUM_REPEATS = 10

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 32 Column: 1

              
### KPL AND FC IMPLEMENTATION BENCHMARKS ###
def embedding_varlen(batch_size, max_length):
  """Benchmark a variable-length embedding."""
  # Data and constants.
  embedding_size = 32768
  data = fc_bm.create_data(
      max_length, batch_size * NUM_REPEATS, embedding_size - 1, dtype=int)


            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 34 Column: 1

              def embedding_varlen(batch_size, max_length):
  """Benchmark a variable-length embedding."""
  # Data and constants.
  embedding_size = 32768
  data = fc_bm.create_data(
      max_length, batch_size * NUM_REPEATS, embedding_size - 1, dtype=int)

  # Keras implementation
  model = keras.Sequential()

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 35 Column: 1

                """Benchmark a variable-length embedding."""
  # Data and constants.
  embedding_size = 32768
  data = fc_bm.create_data(
      max_length, batch_size * NUM_REPEATS, embedding_size - 1, dtype=int)

  # Keras implementation
  model = keras.Sequential()
  model.add(

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 39 Column: 1

                    max_length, batch_size * NUM_REPEATS, embedding_size - 1, dtype=int)

  # Keras implementation
  model = keras.Sequential()
  model.add(
      keras.Input(shape=(None,), ragged=True, name="data", dtype=tf.int64))
  model.add(keras.layers.Embedding(embedding_size, 256))
  model.add(keras.layers.Lambda(lambda x: tf.reduce_mean(x, axis=-1)))


            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 40 Column: 1

              
  # Keras implementation
  model = keras.Sequential()
  model.add(
      keras.Input(shape=(None,), ragged=True, name="data", dtype=tf.int64))
  model.add(keras.layers.Embedding(embedding_size, 256))
  model.add(keras.layers.Lambda(lambda x: tf.reduce_mean(x, axis=-1)))

  # FC implementation

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 42 Column: 1

                model = keras.Sequential()
  model.add(
      keras.Input(shape=(None,), ragged=True, name="data", dtype=tf.int64))
  model.add(keras.layers.Embedding(embedding_size, 256))
  model.add(keras.layers.Lambda(lambda x: tf.reduce_mean(x, axis=-1)))

  # FC implementation
  fc = tf.feature_column.embedding_column(
      tf.feature_column.categorical_column_with_identity(

            

Reported by Pylint.