The following issues were found
keras/legacy_tf_layers/core.py
34 issues
Line: 15
Column: 1
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
# pylint: disable=g-classes-have-attributes
"""Contains the core layers: Dense, Dropout.
Also contains their functional aliases.
"""
from __future__ import absolute_import
Reported by Pylint.
Line: 24
Column: 1
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v2 as tf
import warnings
from keras import layers as keras_layers
from keras.legacy_tf_layers import base
Reported by Pylint.
Line: 30
Column: 1
from keras import layers as keras_layers
from keras.legacy_tf_layers import base
from tensorflow.python.util.tf_export import keras_export
from tensorflow.python.util.tf_export import tf_export
@keras_export(v1=['keras.__internal__.legacy.layers.Dense'])
@tf_export(v1=['layers.Dense'])
Reported by Pylint.
Line: 31
Column: 1
from keras import layers as keras_layers
from keras.legacy_tf_layers import base
from tensorflow.python.util.tf_export import keras_export
from tensorflow.python.util.tf_export import tf_export
@keras_export(v1=['keras.__internal__.legacy.layers.Dense'])
@tf_export(v1=['layers.Dense'])
class Dense(keras_layers.Dense, base.Layer):
Reported by Pylint.
Line: 450
Column: 3
```
@end_compatibility
"""
pass
@keras_export(v1=['keras.__internal__.legacy.layers.flatten'])
@tf_export(v1=['layers.flatten'])
def flatten(inputs, name=None, data_format='channels_last'):
Reported by Pylint.
Line: 26
Column: 1
import tensorflow.compat.v2 as tf
import warnings
from keras import layers as keras_layers
from keras.legacy_tf_layers import base
from tensorflow.python.util.tf_export import keras_export
from tensorflow.python.util.tf_export import tf_export
Reported by Pylint.
Line: 37
Column: 1
@keras_export(v1=['keras.__internal__.legacy.layers.Dense'])
@tf_export(v1=['layers.Dense'])
class Dense(keras_layers.Dense, base.Layer):
"""Densely-connected layer class.
This layer implements the operation:
`outputs = activation(inputs * kernel + bias)`
Where `activation` is the activation function passed as the `activation`
argument (if not `None`), `kernel` is a weights matrix created by the layer,
Reported by Pylint.
Line: 116
Column: 1
@end_compatibility
"""
def __init__(self, units,
activation=None,
use_bias=True,
kernel_initializer=None,
bias_initializer=tf.compat.v1.zeros_initializer(),
kernel_regularizer=None,
Reported by Pylint.
Line: 116
Column: 3
@end_compatibility
"""
def __init__(self, units,
activation=None,
use_bias=True,
kernel_initializer=None,
bias_initializer=tf.compat.v1.zeros_initializer(),
kernel_regularizer=None,
Reported by Pylint.
Line: 129
Column: 1
trainable=True,
name=None,
**kwargs):
super(Dense, self).__init__(units=units,
activation=activation,
use_bias=use_bias,
kernel_initializer=kernel_initializer,
bias_initializer=bias_initializer,
kernel_regularizer=kernel_regularizer,
Reported by Pylint.
keras/layers/preprocessing/benchmarks/category_vocab_list_indicator_varlen_benchmark.py
34 issues
Line: 17
Column: 1
# ==============================================================================
"""Benchmark for KPL implementation of vocabulary columns + indicator from lists with varying-length inputs."""
import tensorflow as tf
import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import category_encoding
from keras.layers.preprocessing import string_lookup
Reported by Pylint.
Line: 19
Column: 1
import tensorflow as tf
import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import category_encoding
from keras.layers.preprocessing import string_lookup
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm
Reported by Pylint.
Line: 20
Column: 1
import tensorflow as tf
import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import category_encoding
from keras.layers.preprocessing import string_lookup
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm
# This is required as of 3/2021 because otherwise we drop into graph mode.
Reported by Pylint.
Line: 21
Column: 1
import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import category_encoding
from keras.layers.preprocessing import string_lookup
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm
# This is required as of 3/2021 because otherwise we drop into graph mode.
tf.compat.v1.enable_v2_behavior()
Reported by Pylint.
Line: 22
Column: 1
import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import category_encoding
from keras.layers.preprocessing import string_lookup
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm
# This is required as of 3/2021 because otherwise we drop into graph mode.
tf.compat.v1.enable_v2_behavior()
Reported by Pylint.
Line: 23
Column: 1
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import category_encoding
from keras.layers.preprocessing import string_lookup
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm
# This is required as of 3/2021 because otherwise we drop into graph mode.
tf.compat.v1.enable_v2_behavior()
NUM_REPEATS = 10
Reported by Pylint.
Line: 15
Column: 1
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Benchmark for KPL implementation of vocabulary columns + indicator from lists with varying-length inputs."""
import tensorflow as tf
import keras
from tensorflow.python.eager.def_function import function as tf_function
Reported by Pylint.
Line: 33
Column: 1
def embedding_varlen(batch_size, max_length):
"""Benchmark a variable-length embedding."""
# Data and constants.
vocab_size = 32768
vocab = fc_bm.create_vocabulary(vocab_size)
data = fc_bm.create_string_data(
max_length, batch_size * NUM_REPEATS, vocab, pct_oov=0.15)
Reported by Pylint.
Line: 35
Column: 1
def embedding_varlen(batch_size, max_length):
"""Benchmark a variable-length embedding."""
# Data and constants.
vocab_size = 32768
vocab = fc_bm.create_vocabulary(vocab_size)
data = fc_bm.create_string_data(
max_length, batch_size * NUM_REPEATS, vocab, pct_oov=0.15)
# Keras implementation
Reported by Pylint.
Line: 36
Column: 1
"""Benchmark a variable-length embedding."""
# Data and constants.
vocab_size = 32768
vocab = fc_bm.create_vocabulary(vocab_size)
data = fc_bm.create_string_data(
max_length, batch_size * NUM_REPEATS, vocab, pct_oov=0.15)
# Keras implementation
model = keras.Sequential()
Reported by Pylint.
keras/layers/preprocessing/benchmarks/weighted_embedding_varlen_benchmark.py
34 issues
Line: 17
Column: 1
# ==============================================================================
"""Benchmark for KPL implementation of weighted embedding column with varying-length inputs."""
import tensorflow as tf
import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm
Reported by Pylint.
Line: 19
Column: 1
import tensorflow as tf
import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm
# This is required as of 3/2021 because otherwise we drop into graph mode.
tf.compat.v1.enable_v2_behavior()
Reported by Pylint.
Line: 20
Column: 1
import tensorflow as tf
import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm
# This is required as of 3/2021 because otherwise we drop into graph mode.
tf.compat.v1.enable_v2_behavior()
Reported by Pylint.
Line: 21
Column: 1
import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm
# This is required as of 3/2021 because otherwise we drop into graph mode.
tf.compat.v1.enable_v2_behavior()
NUM_REPEATS = 10
Reported by Pylint.
Line: 31
Column: 1
### KPL AND FC IMPLEMENTATION BENCHMARKS ###
def embedding_varlen(batch_size, max_length):
"""Benchmark a variable-length embedding."""
# Data and constants.
embedding_size = 32768
data = fc_bm.create_data(
max_length, batch_size * NUM_REPEATS, embedding_size - 1, dtype=int)
Reported by Pylint.
Line: 32
Column: 1
### KPL AND FC IMPLEMENTATION BENCHMARKS ###
def embedding_varlen(batch_size, max_length):
"""Benchmark a variable-length embedding."""
# Data and constants.
embedding_size = 32768
data = fc_bm.create_data(
max_length, batch_size * NUM_REPEATS, embedding_size - 1, dtype=int)
weight = tf.ones_like(data, dtype=tf.float32)
Reported by Pylint.
Line: 34
Column: 1
def embedding_varlen(batch_size, max_length):
"""Benchmark a variable-length embedding."""
# Data and constants.
embedding_size = 32768
data = fc_bm.create_data(
max_length, batch_size * NUM_REPEATS, embedding_size - 1, dtype=int)
weight = tf.ones_like(data, dtype=tf.float32)
# Keras implementation
Reported by Pylint.
Line: 35
Column: 1
"""Benchmark a variable-length embedding."""
# Data and constants.
embedding_size = 32768
data = fc_bm.create_data(
max_length, batch_size * NUM_REPEATS, embedding_size - 1, dtype=int)
weight = tf.ones_like(data, dtype=tf.float32)
# Keras implementation
data_input = keras.Input(
Reported by Pylint.
Line: 37
Column: 1
embedding_size = 32768
data = fc_bm.create_data(
max_length, batch_size * NUM_REPEATS, embedding_size - 1, dtype=int)
weight = tf.ones_like(data, dtype=tf.float32)
# Keras implementation
data_input = keras.Input(
shape=(None,), ragged=True, name="data", dtype=tf.int64)
weight_input = keras.Input(
Reported by Pylint.
Line: 40
Column: 1
weight = tf.ones_like(data, dtype=tf.float32)
# Keras implementation
data_input = keras.Input(
shape=(None,), ragged=True, name="data", dtype=tf.int64)
weight_input = keras.Input(
shape=(None,), ragged=True, name="weight", dtype=tf.float32)
embedded_data = keras.layers.Embedding(embedding_size, 256)(data_input)
weighted_embedding = tf.multiply(
Reported by Pylint.
keras/layers/preprocessing/benchmarks/category_vocab_list_indicator_dense_benchmark.py
34 issues
Line: 17
Column: 1
# ==============================================================================
"""Benchmark for KPL implementation of vocabulary columns + indicator from lists with dense inputs."""
import tensorflow as tf
import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import category_encoding
from keras.layers.preprocessing import string_lookup
Reported by Pylint.
Line: 19
Column: 1
import tensorflow as tf
import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import category_encoding
from keras.layers.preprocessing import string_lookup
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm
Reported by Pylint.
Line: 20
Column: 1
import tensorflow as tf
import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import category_encoding
from keras.layers.preprocessing import string_lookup
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm
# This is required as of 3/2021 because otherwise we drop into graph mode.
Reported by Pylint.
Line: 21
Column: 1
import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import category_encoding
from keras.layers.preprocessing import string_lookup
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm
# This is required as of 3/2021 because otherwise we drop into graph mode.
tf.compat.v1.enable_v2_behavior()
Reported by Pylint.
Line: 22
Column: 1
import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import category_encoding
from keras.layers.preprocessing import string_lookup
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm
# This is required as of 3/2021 because otherwise we drop into graph mode.
tf.compat.v1.enable_v2_behavior()
Reported by Pylint.
Line: 23
Column: 1
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import category_encoding
from keras.layers.preprocessing import string_lookup
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm
# This is required as of 3/2021 because otherwise we drop into graph mode.
tf.compat.v1.enable_v2_behavior()
NUM_REPEATS = 10
Reported by Pylint.
Line: 15
Column: 1
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Benchmark for KPL implementation of vocabulary columns + indicator from lists with dense inputs."""
import tensorflow as tf
import keras
from tensorflow.python.eager.def_function import function as tf_function
Reported by Pylint.
Line: 33
Column: 1
def embedding_varlen(batch_size, max_length):
"""Benchmark a variable-length embedding."""
# Data and constants.
vocab_size = 32768
vocab = fc_bm.create_vocabulary(vocab_size)
data = fc_bm.create_string_data(
max_length, batch_size * NUM_REPEATS, vocab, pct_oov=0.15)
Reported by Pylint.
Line: 35
Column: 1
def embedding_varlen(batch_size, max_length):
"""Benchmark a variable-length embedding."""
# Data and constants.
vocab_size = 32768
vocab = fc_bm.create_vocabulary(vocab_size)
data = fc_bm.create_string_data(
max_length, batch_size * NUM_REPEATS, vocab, pct_oov=0.15)
# Keras implementation
Reported by Pylint.
Line: 36
Column: 1
"""Benchmark a variable-length embedding."""
# Data and constants.
vocab_size = 32768
vocab = fc_bm.create_vocabulary(vocab_size)
data = fc_bm.create_string_data(
max_length, batch_size * NUM_REPEATS, vocab, pct_oov=0.15)
# Keras implementation
model = keras.Sequential()
Reported by Pylint.
keras/saving/saved_model/model_serialization.py
33 issues
Line: 17
Column: 1
# ==============================================================================
"""Classes and functions implementing to Model SavedModel serialization."""
from keras.saving import saving_utils
from keras.saving.saved_model import constants
from keras.saving.saved_model import layer_serialization
from keras.saving.saved_model import save_impl
Reported by Pylint.
Line: 18
Column: 1
"""Classes and functions implementing to Model SavedModel serialization."""
from keras.saving import saving_utils
from keras.saving.saved_model import constants
from keras.saving.saved_model import layer_serialization
from keras.saving.saved_model import save_impl
class ModelSavedModelSaver(layer_serialization.LayerSavedModelSaver):
Reported by Pylint.
Line: 19
Column: 1
from keras.saving import saving_utils
from keras.saving.saved_model import constants
from keras.saving.saved_model import layer_serialization
from keras.saving.saved_model import save_impl
class ModelSavedModelSaver(layer_serialization.LayerSavedModelSaver):
"""Model SavedModel serialization."""
Reported by Pylint.
Line: 20
Column: 1
from keras.saving import saving_utils
from keras.saving.saved_model import constants
from keras.saving.saved_model import layer_serialization
from keras.saving.saved_model import save_impl
class ModelSavedModelSaver(layer_serialization.LayerSavedModelSaver):
"""Model SavedModel serialization."""
Reported by Pylint.
Line: 23
Column: 1
from keras.saving.saved_model import save_impl
class ModelSavedModelSaver(layer_serialization.LayerSavedModelSaver):
"""Model SavedModel serialization."""
@property
def object_identifier(self):
return constants.MODEL_IDENTIFIER
Reported by Pylint.
Line: 24
Column: 1
class ModelSavedModelSaver(layer_serialization.LayerSavedModelSaver):
"""Model SavedModel serialization."""
@property
def object_identifier(self):
return constants.MODEL_IDENTIFIER
Reported by Pylint.
Line: 26
Column: 1
class ModelSavedModelSaver(layer_serialization.LayerSavedModelSaver):
"""Model SavedModel serialization."""
@property
def object_identifier(self):
return constants.MODEL_IDENTIFIER
def _python_properties_internal(self):
metadata = super(ModelSavedModelSaver, self)._python_properties_internal()
Reported by Pylint.
Line: 27
Column: 3
"""Model SavedModel serialization."""
@property
def object_identifier(self):
return constants.MODEL_IDENTIFIER
def _python_properties_internal(self):
metadata = super(ModelSavedModelSaver, self)._python_properties_internal()
# Network stateful property is dependent on the child layers.
Reported by Pylint.
Line: 27
Column: 1
"""Model SavedModel serialization."""
@property
def object_identifier(self):
return constants.MODEL_IDENTIFIER
def _python_properties_internal(self):
metadata = super(ModelSavedModelSaver, self)._python_properties_internal()
# Network stateful property is dependent on the child layers.
Reported by Pylint.
Line: 28
Column: 1
@property
def object_identifier(self):
return constants.MODEL_IDENTIFIER
def _python_properties_internal(self):
metadata = super(ModelSavedModelSaver, self)._python_properties_internal()
# Network stateful property is dependent on the child layers.
metadata.pop('stateful')
Reported by Pylint.
keras/layers/preprocessing/integer_lookup.py
33 issues
Line: 17
Column: 1
# ==============================================================================
"""Keras string lookup preprocessing layer."""
# pylint: disable=g-classes-have-attributes
from keras.engine import base_preprocessing_layer
from keras.layers.preprocessing import index_lookup
import numpy as np
import tensorflow.compat.v2 as tf
Reported by Pylint.
Line: 22
Column: 1
from keras.engine import base_preprocessing_layer
from keras.layers.preprocessing import index_lookup
import numpy as np
import tensorflow.compat.v2 as tf
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.util.tf_export import keras_export
@keras_export(
Reported by Pylint.
Line: 23
Column: 1
from keras.layers.preprocessing import index_lookup
import numpy as np
import tensorflow.compat.v2 as tf
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.util.tf_export import keras_export
@keras_export(
"keras.layers.IntegerLookup",
Reported by Pylint.
Line: 24
Column: 1
import numpy as np
import tensorflow.compat.v2 as tf
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.util.tf_export import keras_export
@keras_export(
"keras.layers.IntegerLookup",
"keras.layers.experimental.preprocessing.IntegerLookup",
Reported by Pylint.
Line: 32
Column: 1
"keras.layers.experimental.preprocessing.IntegerLookup",
v1=[])
class IntegerLookup(index_lookup.IndexLookup):
"""Reindex integer inputs to be in a contiguous range, via a dict lookup.
This layer maps a set of arbitrary integer input tokens into indexed
integer output via a table-based vocabulary lookup. The layer's output indices
will be contiguously arranged up to the maximum vocab size, even if the input
tokens are non-continguous or unbounded. The layer supports multiple options
Reported by Pylint.
Line: 297
Column: 1
either directly or via `adapt()` before calling `get_vocabulary()`.
"""
def __init__(self,
max_tokens=None,
num_oov_indices=1,
mask_token=None,
oov_token=-1,
vocabulary=None,
Reported by Pylint.
Line: 297
Column: 3
either directly or via `adapt()` before calling `get_vocabulary()`.
"""
def __init__(self,
max_tokens=None,
num_oov_indices=1,
mask_token=None,
oov_token=-1,
vocabulary=None,
Reported by Pylint.
Line: 308
Column: 1
sparse=False,
pad_to_max_tokens=False,
**kwargs):
allowed_dtypes = [tf.int64]
# Support deprecated args for this layer.
if "max_values" in kwargs:
logging.log_first_n(logging.WARN,
"max_values is deprecated, use max_tokens instead.",
Reported by Pylint.
Line: 311
Column: 1
allowed_dtypes = [tf.int64]
# Support deprecated args for this layer.
if "max_values" in kwargs:
logging.log_first_n(logging.WARN,
"max_values is deprecated, use max_tokens instead.",
1)
max_tokens = kwargs["max_values"]
del kwargs["max_values"]
Reported by Pylint.
Line: 312
Column: 1
# Support deprecated args for this layer.
if "max_values" in kwargs:
logging.log_first_n(logging.WARN,
"max_values is deprecated, use max_tokens instead.",
1)
max_tokens = kwargs["max_values"]
del kwargs["max_values"]
if "mask_value" in kwargs:
Reported by Pylint.
keras/integration_test/tf_trt_test.py
33 issues
Line: 19
Column: 1
import os
import tempfile
from absl import flags
import tensorflow as tf
import tensorflow_text as tf_text
Reported by Pylint.
Line: 21
Column: 1
from absl import flags
import tensorflow as tf
import tensorflow_text as tf_text
class ConvertResource(tf.test.TestCase):
Reported by Pylint.
Line: 22
Column: 1
from absl import flags
import tensorflow as tf
import tensorflow_text as tf_text
class ConvertResource(tf.test.TestCase):
def testConvertResource(self):
Reported by Pylint.
Line: 1
Column: 1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
Reported by Pylint.
Line: 25
Column: 1
import tensorflow_text as tf_text
class ConvertResource(tf.test.TestCase):
def testConvertResource(self):
"""Test general resource inputs don't crash the converter."""
if not tf.test.is_built_with_cuda():
self.skipTest('test is only applicable with CUDA')
Reported by Pylint.
Line: 25
Column: 1
import tensorflow_text as tf_text
class ConvertResource(tf.test.TestCase):
def testConvertResource(self):
"""Test general resource inputs don't crash the converter."""
if not tf.test.is_built_with_cuda():
self.skipTest('test is only applicable with CUDA')
Reported by Pylint.
Line: 27
Column: 1
class ConvertResource(tf.test.TestCase):
def testConvertResource(self):
"""Test general resource inputs don't crash the converter."""
if not tf.test.is_built_with_cuda():
self.skipTest('test is only applicable with CUDA')
class TokenizeLayer(tf.keras.layers.Layer):
Reported by Pylint.
Line: 27
Column: 3
class ConvertResource(tf.test.TestCase):
def testConvertResource(self):
"""Test general resource inputs don't crash the converter."""
if not tf.test.is_built_with_cuda():
self.skipTest('test is only applicable with CUDA')
class TokenizeLayer(tf.keras.layers.Layer):
Reported by Pylint.
Line: 28
Column: 1
class ConvertResource(tf.test.TestCase):
def testConvertResource(self):
"""Test general resource inputs don't crash the converter."""
if not tf.test.is_built_with_cuda():
self.skipTest('test is only applicable with CUDA')
class TokenizeLayer(tf.keras.layers.Layer):
Reported by Pylint.
Line: 29
Column: 1
def testConvertResource(self):
"""Test general resource inputs don't crash the converter."""
if not tf.test.is_built_with_cuda():
self.skipTest('test is only applicable with CUDA')
class TokenizeLayer(tf.keras.layers.Layer):
def __init__(self, vocab_file):
Reported by Pylint.
keras/saving/save.py
33 issues
Line: 17
Column: 1
# ==============================================================================
"""Keras model saving code."""
import tensorflow.compat.v2 as tf
from keras.saving import hdf5_format
from keras.saving import saving_utils
from keras.saving.saved_model import load as saved_model_load
from keras.saving.saved_model import load_context
from keras.saving.saved_model import save as saved_model_save
Reported by Pylint.
Line: 26
Column: 1
from keras.utils import generic_utils
from keras.utils import traceback_utils
from keras.utils.io_utils import path_to_string
from tensorflow.python.util.tf_export import keras_export
# pylint: disable=g-import-not-at-top
try:
import h5py
except ImportError:
Reported by Pylint.
Line: 28
Column: 1
from keras.utils.io_utils import path_to_string
from tensorflow.python.util.tf_export import keras_export
# pylint: disable=g-import-not-at-top
try:
import h5py
except ImportError:
h5py = None
# pylint: enable=g-import-not-at-top
Reported by Pylint.
Line: 33
Column: 1
import h5py
except ImportError:
h5py = None
# pylint: enable=g-import-not-at-top
@keras_export('keras.models.save_model')
@traceback_utils.filter_traceback
def save_model(model,
Reported by Pylint.
Line: 122
Column: 1
ImportError: If save format is hdf5, and h5py is not available.
"""
# pylint: enable=line-too-long
from keras.engine import sequential # pylint: disable=g-import-not-at-top
default_format = 'tf' if tf.__internal__.tf2.enabled() else 'h5'
save_format = save_format or default_format
filepath = path_to_string(filepath)
Reported by Pylint.
Line: 137
Column: 3
if (save_format == 'h5' or
(h5py is not None and isinstance(filepath, h5py.File)) or
saving_utils.is_hdf5_filepath(filepath)):
# TODO(b/130258301): add utility method for detecting model type.
if (not model._is_graph_network and # pylint:disable=protected-access
not isinstance(model, sequential.Sequential)):
raise NotImplementedError(
'Saving the model to HDF5 format requires the model to be a '
'Functional model or a Sequential model. It does not work for '
Reported by Pylint.
Line: 30
Column: 1
# pylint: disable=g-import-not-at-top
try:
import h5py
except ImportError:
h5py = None
# pylint: enable=g-import-not-at-top
Reported by Pylint.
Line: 32
Column: 1
try:
import h5py
except ImportError:
h5py = None
# pylint: enable=g-import-not-at-top
@keras_export('keras.models.save_model')
@traceback_utils.filter_traceback
Reported by Pylint.
Line: 38
Column: 1
@keras_export('keras.models.save_model')
@traceback_utils.filter_traceback
def save_model(model,
filepath,
overwrite=True,
include_optimizer=True,
save_format=None,
signatures=None,
Reported by Pylint.
Line: 47
Column: 1
options=None,
save_traces=True):
# pylint: disable=line-too-long
"""Saves a model as a TensorFlow SavedModel or HDF5 file.
See the [Serialization and Saving guide](https://keras.io/guides/serialization_and_saving/)
for details.
Usage:
Reported by Pylint.
keras/layers/preprocessing/normalization_tpu_test.py
32 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for keras.layers.preprocessing.normalization."""
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy as np
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy as np
import keras
from keras import keras_parameterized
Reported by Pylint.
Line: 31
Column: 1
def _get_layer_computation_test_cases():
test_cases = ({
"adapt_data": np.array([[1.], [2.], [3.], [4.], [5.]], dtype=np.float32),
"axis": -1,
"test_data": np.array([[1.], [2.], [3.]], np.float32),
"expected": np.array([[-1.414214], [-.707107], [0]], np.float32),
"testcase_name": "2d_single_element"
Reported by Pylint.
Line: 82
Column: 1
"3d_multiple_axis"
})
crossed_test_cases = []
# Cross above test cases with use_dataset in (True, False)
for use_dataset in (True, False):
for case in test_cases:
case = case.copy()
if use_dataset:
Reported by Pylint.
Line: 84
Column: 1
crossed_test_cases = []
# Cross above test cases with use_dataset in (True, False)
for use_dataset in (True, False):
for case in test_cases:
case = case.copy()
if use_dataset:
case["testcase_name"] = case["testcase_name"] + "_with_dataset"
case["use_dataset"] = use_dataset
Reported by Pylint.
Line: 85
Column: 1
crossed_test_cases = []
# Cross above test cases with use_dataset in (True, False)
for use_dataset in (True, False):
for case in test_cases:
case = case.copy()
if use_dataset:
case["testcase_name"] = case["testcase_name"] + "_with_dataset"
case["use_dataset"] = use_dataset
crossed_test_cases.append(case)
Reported by Pylint.
Line: 86
Column: 1
# Cross above test cases with use_dataset in (True, False)
for use_dataset in (True, False):
for case in test_cases:
case = case.copy()
if use_dataset:
case["testcase_name"] = case["testcase_name"] + "_with_dataset"
case["use_dataset"] = use_dataset
crossed_test_cases.append(case)
Reported by Pylint.
Line: 87
Column: 1
for use_dataset in (True, False):
for case in test_cases:
case = case.copy()
if use_dataset:
case["testcase_name"] = case["testcase_name"] + "_with_dataset"
case["use_dataset"] = use_dataset
crossed_test_cases.append(case)
return crossed_test_cases
Reported by Pylint.
Line: 88
Column: 1
for case in test_cases:
case = case.copy()
if use_dataset:
case["testcase_name"] = case["testcase_name"] + "_with_dataset"
case["use_dataset"] = use_dataset
crossed_test_cases.append(case)
return crossed_test_cases
Reported by Pylint.
Line: 89
Column: 1
case = case.copy()
if use_dataset:
case["testcase_name"] = case["testcase_name"] + "_with_dataset"
case["use_dataset"] = use_dataset
crossed_test_cases.append(case)
return crossed_test_cases
Reported by Pylint.
keras/utils/io_utils_test.py
32 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for io_utils."""
import tensorflow.compat.v2 as tf
import builtins
from pathlib import Path
from keras import keras_parameterized
Reported by Pylint.
Line: 31
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b108_hardcoded_tmp_directory.html
def test_ask_to_proceed_with_overwrite(self):
with tf.compat.v1.test.mock.patch.object(builtins, 'input') as mock_log:
mock_log.return_value = 'y'
self.assertTrue(io_utils.ask_to_proceed_with_overwrite('/tmp/not_exists'))
mock_log.return_value = 'n'
self.assertFalse(
io_utils.ask_to_proceed_with_overwrite('/tmp/not_exists'))
Reported by Bandit.
Line: 35
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b108_hardcoded_tmp_directory.html
mock_log.return_value = 'n'
self.assertFalse(
io_utils.ask_to_proceed_with_overwrite('/tmp/not_exists'))
mock_log.side_effect = ['m', 'y']
self.assertTrue(io_utils.ask_to_proceed_with_overwrite('/tmp/not_exists'))
mock_log.side_effect = ['m', 'n']
Reported by Bandit.
Line: 38
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b108_hardcoded_tmp_directory.html
io_utils.ask_to_proceed_with_overwrite('/tmp/not_exists'))
mock_log.side_effect = ['m', 'y']
self.assertTrue(io_utils.ask_to_proceed_with_overwrite('/tmp/not_exists'))
mock_log.side_effect = ['m', 'n']
self.assertFalse(
io_utils.ask_to_proceed_with_overwrite('/tmp/not_exists'))
Reported by Bandit.
Line: 42
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b108_hardcoded_tmp_directory.html
mock_log.side_effect = ['m', 'n']
self.assertFalse(
io_utils.ask_to_proceed_with_overwrite('/tmp/not_exists'))
def test_path_to_string(self):
class PathLikeDummy:
Reported by Bandit.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
import builtins
from pathlib import Path
from keras import keras_parameterized
from keras.utils import io_utils
Reported by Pylint.
Line: 20
Column: 1
import tensorflow.compat.v2 as tf
import builtins
from pathlib import Path
from keras import keras_parameterized
from keras.utils import io_utils
Reported by Pylint.
Line: 26
Column: 1
from keras.utils import io_utils
class TestIOUtils(keras_parameterized.TestCase):
def test_ask_to_proceed_with_overwrite(self):
with tf.compat.v1.test.mock.patch.object(builtins, 'input') as mock_log:
mock_log.return_value = 'y'
self.assertTrue(io_utils.ask_to_proceed_with_overwrite('/tmp/not_exists'))
Reported by Pylint.
Line: 28
Column: 1
class TestIOUtils(keras_parameterized.TestCase):
def test_ask_to_proceed_with_overwrite(self):
with tf.compat.v1.test.mock.patch.object(builtins, 'input') as mock_log:
mock_log.return_value = 'y'
self.assertTrue(io_utils.ask_to_proceed_with_overwrite('/tmp/not_exists'))
mock_log.return_value = 'n'
Reported by Pylint.
Line: 28
Column: 3
class TestIOUtils(keras_parameterized.TestCase):
def test_ask_to_proceed_with_overwrite(self):
with tf.compat.v1.test.mock.patch.object(builtins, 'input') as mock_log:
mock_log.return_value = 'y'
self.assertTrue(io_utils.ask_to_proceed_with_overwrite('/tmp/not_exists'))
mock_log.return_value = 'n'
Reported by Pylint.